Functional Tough Hydrogels: Design, Processing, and Biomedical Applications

自愈水凝胶 韧性 材料设计 软质材料 生物相容性 纳米技术 材料科学 复合材料 高分子化学 冶金
作者
Xiao Kuang,Mehmet Onur Arıcan,Tao Zhou,Xuanhe Zhao,Yu Shrike Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (2): 101-114 被引量:68
标识
DOI:10.1021/accountsmr.2c00026
摘要

ConspectusHydrogels are high-water-content soft materials with widely tunable physicochemical properties, resembling soft tissues. Tremendous progress in engineering hydrogels with good biocompatibility, suitable bioactivities, and controlled geometries has made them promising candidates for broad applications. Nevertheless, conventional hydrogels usually suffer from weak mechanical properties, limiting their use in biomedical settings involving load-bearing and persistent mechanical deformations. Inspired by the extreme mechanical properties and multiscale hierarchical structures of biological tissues, mechanically robust tough hydrogels have been developed. Combining robust mechanical properties and other desired performance characteristics in functional tough hydrogels expands their opportunities in biomedical fields. This Account seeks to guide the readership regarding the recent progress in functional tough hydrogels with a focus on molecular/structural design and novel fabrications, particularly surrounding the works reported by our groups. Meanwhile, functional tough hydrogels for multiple biomedical applications are discussed, highlighting the underlying mechanisms governing their relevant applications. We begin by introducing the definition, measurements, and design principles of tough hydrogels and hydrogel adhesives in terms of soft materials mechanics. Various molecular and structural engineering approaches by building mechanical dissipation into stretchable hydrogels to realize stress homogenization or energy dissipation are exploited to fabricate tough hydrogels. Molecular engineering-based network architecture design of homogeneous hydrogels and structural engineering-based design of heterogeneous hydrogels are elaborated. The conventional energy-dissipation-based tough hydrogels are reinforced by the sacrificial bonds or components, leading to a substantial toughness reduction in subsequent loading cycles. To this end, new molecular designs, including highly entangled hydrogels and sliding-ring hydrogels, have been developed to resolve the toughness–hysteresis conflict. In addition, novel processing techniques, including salting out, freeze casting, and three-dimensional (bio)printing, are exploited to manipulate the multiscale structures and geometries for tough hydrogel fabrication. As some of the most actively studied materials in recent years, functional tough hydrogels are finding promising applications as bioadhesives/coatings, tissue-engineering scaffolds, soft robot/actuators, and bioelectronics interfaces. The development of tough bioadhesives/coatings lies in constructing strong interfacial linkages between the tough hydrogels and the underlying substrates, having broad applications in wound closure and drug delivery. Tough hydrogels have also been widely studied for use in tissue engineering and regenerative medicine, although the conflict of mechanical robustness–cellular function restricts their practical applications. The flexible and compliant tough hydrogels with stimuli-responsive shape shifting and pressure-triggered actuation make them good candidates as actuators and soft robots for biomedical devices dealing with soft tissues. Conductive tough hydrogels also have been widely exploited for utility in bioelectronics. In the end, we highlight the major challenges and emphasize the trends in developing the next-generation functional tough hydrogels for practical biomedical and medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zizilala发布了新的文献求助10
3秒前
3秒前
3秒前
田様应助tidongzhiwu采纳,获得10
4秒前
djh233完成签到,获得积分20
5秒前
Ayaka2333完成签到,获得积分10
5秒前
黑大帅完成签到,获得积分10
5秒前
烟花应助fixit采纳,获得10
5秒前
斯文败类应助Blessing采纳,获得10
5秒前
木印天完成签到,获得积分10
6秒前
心杨完成签到,获得积分10
6秒前
sky完成签到,获得积分10
8秒前
解磷真菌完成签到,获得积分10
8秒前
zizilala完成签到,获得积分10
9秒前
9秒前
巫念烟发布了新的文献求助30
10秒前
英姑应助lys采纳,获得10
10秒前
10秒前
隐形曼青应助张晓芳采纳,获得10
12秒前
12秒前
Li完成签到,获得积分10
13秒前
13秒前
十七发布了新的文献求助10
13秒前
13秒前
SYLH应助save采纳,获得20
14秒前
搜集达人应助嘻哈采纳,获得10
14秒前
14秒前
Cheney发布了新的文献求助10
15秒前
斯文败类应助言亦云采纳,获得10
15秒前
orixero应助赵宝正采纳,获得10
16秒前
17秒前
拼搏的天薇完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
小小怪发布了新的文献求助10
18秒前
19秒前
夏木发布了新的文献求助10
19秒前
斯文败类应助stuart采纳,获得10
19秒前
tidongzhiwu发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451