DAMO-YOLO : A Report on Real-Time Object Detection Design

计算机科学 目标检测 升级 联营 探测器 延迟(音频) 并行计算 人工智能 模式识别(心理学) 操作系统 电信
作者
Xianzhe Xu,Yiqi Jiang,Weihua Chen,Yilun Huang,Yuan Zhang,Xiuyu Sun
出处
期刊:Cornell University - arXiv 被引量:73
标识
DOI:10.48550/arxiv.2211.15444
摘要

In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet/CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of ``large neck, small head''.We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results.In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios. For general industry requirements, we propose DAMO-YOLO-T/S/M/L. They can achieve 43.6/47.7/50.2/51.9 mAPs on COCO with the latency of 2.78/3.83/5.62/7.95 ms on T4 GPUs respectively. Additionally, for edge devices with limited computing power, we have also proposed DAMO-YOLO-Ns/Nm/Nl lightweight models. They can achieve 32.3/38.2/40.5 mAPs on COCO with the latency of 4.08/5.05/6.69 ms on X86-CPU. Our proposed general and lightweight models have outperformed other YOLO series models in their respective application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助和花花采纳,获得10
刚刚
2秒前
3秒前
在水一方应助彭维楚采纳,获得10
3秒前
5秒前
Cherry完成签到 ,获得积分10
5秒前
5秒前
咸心厚皮橙完成签到,获得积分10
6秒前
6秒前
在水一方应助Oay采纳,获得10
6秒前
000发布了新的文献求助10
7秒前
文静三颜发布了新的文献求助10
7秒前
奋斗绿旋发布了新的文献求助10
9秒前
慕青应助kento采纳,获得100
9秒前
科目三应助淡定思枫采纳,获得10
10秒前
星辰大海应助幽默发夹采纳,获得10
10秒前
11秒前
hh发布了新的文献求助10
11秒前
我可厉害了完成签到,获得积分10
12秒前
Xiaochou完成签到,获得积分20
12秒前
cheng完成签到,获得积分10
13秒前
haheihe发布了新的文献求助10
13秒前
叉猹的闰土应助文静三颜采纳,获得10
13秒前
jdh完成签到,获得积分10
14秒前
15秒前
wanci应助搂猫睡觉的鱼采纳,获得10
16秒前
16秒前
坚强的蚂蚁完成签到,获得积分10
17秒前
17秒前
希望天下0贩的0应助曹kn采纳,获得10
17秒前
17秒前
17秒前
大个应助Seldomyg采纳,获得10
18秒前
19秒前
000完成签到,获得积分10
19秒前
20秒前
20秒前
lalala发布了新的文献求助10
20秒前
李爱国应助111111111采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554493
求助须知:如何正确求助?哪些是违规求助? 3130313
关于积分的说明 9386036
捐赠科研通 2829580
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715480