ECG Denoising Method Based on an Improved VMD Algorithm

算法 符号 降噪 噪音(视频) 数学 计算机科学 人工智能 算术 图像(数学)
作者
Chengjun Li,Yacen Wu,Haijun Lin,Jianmin Li,Fu Zhang,Yuxiang Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (23): 22725-22733 被引量:39
标识
DOI:10.1109/jsen.2022.3214239
摘要

Electrocardiogram (ECG) acquisition is easily contaminated by interferences, and denoising is the most important task in ECG detection. The variational mode decomposition (VMD) algorithm is widely used in ECG denoising, which can overcome mode aliasing between intrinsic mode function (IMF) components that existed in the traditional empirical mode decomposition (EMD) algorithm, but the mode decomposition number ${K}$ and penalty factor $\alpha $ in VMD must be optimized to obtain the best signal decomposition accuracy. This article proposes an improved VMD denoising algorithm that overcomes the shortcomings of slow parameter selection and poor generalization in the traditional VMD algorithm. The algorithm presented first adopts the EMD algorithm to remove the low-frequency baseline drift noise and then employs the adaptive particle swarm optimization (APSO) algorithm to optimize the parameter pair ( ${K}$ , $\alpha $ ) for VMD. To validate the denoising performance of the improved VMD algorithm, the No. 103 record from the Massachusetts Institute of Technology (MIT) arrhythmia database is first selected as the pure ECG signal, then both 20-dB Gaussian white noises and 0.3-Hz baseline drift are added to simulate the noisy ECG signal. Second, the ECG signals of nine subjects are collected by a customized ECG detection platform based on AD8232 and ADALM1000. The ECG denoising results in simulation and actual experiments show that the improved VMD algorithm achieves the highest signal-to-noise ratio (SNR), correlation coefficient (CC), and minimum mean square error (MSE) compared with the traditional EMD and VMD algorithms, which demonstrates that the proposed denoising algorithm has stronger denoising ability and better retains morphological characteristics of the original ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
326503177发布了新的文献求助10
刚刚
1秒前
2秒前
4秒前
深情安青应助洁净方盒采纳,获得10
4秒前
共享精神应助玉宝儿采纳,获得10
5秒前
李健的小迷弟应助忆韵采纳,获得10
6秒前
问心完成签到,获得积分20
7秒前
2393843435发布了新的文献求助30
8秒前
搜集达人应助傅英俊采纳,获得10
8秒前
326503177完成签到,获得积分10
9秒前
漂泊2025完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
胡志飞完成签到,获得积分20
13秒前
迅速若魔完成签到,获得积分10
14秒前
15秒前
nn发布了新的文献求助10
16秒前
16秒前
笛卡尔完成签到,获得积分10
16秒前
胡志飞发布了新的文献求助20
17秒前
星辰大海应助2393843435采纳,获得10
18秒前
好运来发布了新的文献求助10
18秒前
所所应助dongdong采纳,获得10
18秒前
18秒前
KatzeBaliey发布了新的文献求助20
19秒前
小蘑菇应助liberty采纳,获得10
20秒前
20秒前
朱江涛完成签到 ,获得积分10
22秒前
爆米花应助闪闪灯泡采纳,获得10
22秒前
22秒前
无剑发布了新的文献求助10
22秒前
在水一方应助徐一羊采纳,获得10
22秒前
舒心的马里奥完成签到,获得积分10
22秒前
Ran完成签到,获得积分20
22秒前
英俊的铭应助zty123采纳,获得10
24秒前
nn完成签到,获得积分20
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516009
求助须知:如何正确求助?哪些是违规求助? 3098158
关于积分的说明 9238366
捐赠科研通 2793178
什么是DOI,文献DOI怎么找? 1532872
邀请新用户注册赠送积分活动 712408
科研通“疑难数据库(出版商)”最低求助积分说明 707256