Effects of atomic size misfit on dislocation mobility in FCC dense solid solution: Atomic simulations and phenomenological modeling

材料科学 位错 原子单位 凝聚态物理 原子半径 热力学 物理 复合材料 量子力学
作者
Yu Tian,Fei Chen,Zhenshan Cui,Xiao Tian
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:160: 103504-103504 被引量:11
标识
DOI:10.1016/j.ijplas.2022.103504
摘要

Understanding the interactions between solute atoms and dislocations is essential to developing metallic materials for simultaneously high strength and ductility. Previous studies have majorly focused on the temperature and solute concentration effects on these interactions, excluding the solute atomic size effect; this greatly limits the capacity of design and strength prediction of alloys. In this study, the effects of atomic size misfit on edge dislocation mobility in model random FCC solid solution alloys are investigated by molecular dynamics (MD) simulations. Our results show that dislocation mobilities are atomic size misfit-dependent only when they are larger than a critical value. Additionally, when the atomic size misfit is greater than the critical value, the dislocation motion is controlled by the pinning mechanism. Conversely, when the atomic size misfit is lower than the critical value, the dislocation mobility is unaffected by the solute atoms because of the negligible lattice distortion, however, it is dominated by the phonon drag mechanism as observed in the pure elemental metal. Thus, the drag coefficient, which reflects the dislocation mobility, exhibits different temperature dependences. Based on these observations, a piecewise linear fit relation of the drag coefficient as a function of atomic size misfit and temperature is determined. Finally, the phenomenological dislocation mobility model containing the atomic size misfit and temperature is established. The results can serve to enhance the understanding of solid-solution strengthening effect. The mobility law that derived from the atomic scale can enable accurate DDD simulations at the mesoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
兜兜完成签到,获得积分10
1秒前
yin发布了新的文献求助10
1秒前
正直夜安完成签到 ,获得积分10
1秒前
风中虔纹完成签到,获得积分10
1秒前
1秒前
1秒前
GH发布了新的文献求助10
2秒前
zhiwei完成签到 ,获得积分0
2秒前
2秒前
花开米兰城完成签到,获得积分10
3秒前
幸福胡萝卜完成签到,获得积分10
3秒前
大模型应助笑傲江湖采纳,获得30
4秒前
搞份炸鸡778完成签到,获得积分10
4秒前
bkagyin应助二狗子采纳,获得10
4秒前
ding应助斯文代荷采纳,获得10
4秒前
CipherSage应助哈哈哈哈怪采纳,获得10
4秒前
GG完成签到,获得积分10
5秒前
老徐发布了新的文献求助20
5秒前
科研通AI2S应助谦让鹏涛采纳,获得10
6秒前
FZUer完成签到,获得积分10
6秒前
skyziy完成签到,获得积分10
6秒前
吕佩给吕佩的求助进行了留言
6秒前
6秒前
花开发布了新的文献求助10
7秒前
liyunma发布了新的文献求助10
7秒前
7秒前
7秒前
拼搏山水完成签到,获得积分10
8秒前
qiuling完成签到,获得积分10
9秒前
Hobby完成签到,获得积分10
9秒前
一一一完成签到 ,获得积分10
10秒前
10秒前
杨震发布了新的文献求助30
11秒前
研友_8KKkb8应助崩坏的幻想采纳,获得10
11秒前
小王小王完成签到 ,获得积分10
11秒前
11秒前
绵绵饲养手册完成签到,获得积分20
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767