溶剂化
电解质
锂(药物)
材料科学
电池(电)
密度泛函理论
化学工程
纳米技术
化学物理
热力学
物理化学
分子
化学
计算化学
电极
物理
有机化学
内分泌学
功率(物理)
工程类
医学
作者
Haoqing Ji,Zhenkang Wang,Ya-Wen Sun,Yang Zhou,Sijie Li,Jinqiu Zhou,Tao Qian,Chenglin Yan
标识
DOI:10.1002/adma.202208590
摘要
Li-S batteries hold promise for pushing cell-level energy densities beyond 300 Wh kg-1 while operating at low temperatures (LTs, below 0 °C). However, the capacity release of existing Li-S batteries at LTs is still barely satisfactory, and there is almost no verification of the practicability of Li-S batteries at LTs in the Ah-level pouch cell. Here, antecedent molecular dynamics (MDs) combined with density functional theory analysis are used to systematically investigate Li+ solvation structure in conventional Li-S batteries at LTs, which unprecedentedly reveals the positive correlation between lithium salt concentration and Li+ de-solvation barrier, indicating dilute electrolytes can enhance the Li+ de-solvation kinetics and thus improve the capacity performance of cryogenic Li-S batteries. These insights derived from theoretical simulations invested Li-S batteries with a 67.34% capacity retention at -40 °C compared to their room temperature performance. In particular, an Ah-level Li-S pouch cell using dilute electrolytes with a high sulfur loading (5.6 mg cm-2 ) and lean electrolyte condition is fabricated, which delivers a discharge capacity of about 1000 mAh g-1 and ultra-high energy density of 350 Wh kg-1 at 0 °C, offering a promising route toward a practical high-energy cryogenic Li-S battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI