亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyper-Temporal Data Based Modulation Transfer Functions Compensation for Geostationary Remote Sensing Satellites

地球静止轨道 光传递函数 计算机科学 遥感 稳健性(进化) 图像质量 卫星 图像传感器 计算机视觉 人工智能 光学 图像(数学) 物理 生物化学 天文 基因 地质学 化学
作者
Xue Yang,Liang Liang,Feng Li,Qingjiu Tian,Xiaotian Lu,Xin Lei,Yi Guo,Wenjun Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-10 被引量:1
标识
DOI:10.1109/tgrs.2022.3221528
摘要

Over the past years, the acquisition of hyper-temporal data (HTD) from geostationary orbit remote sensing satellites (GEORSS) has provided numerous new research opportunities. Many factors influence the in-orbit dynamic modulation transfer function (MTF) of GEORSS, making it difficult to satisfy the requirements for space-borne cameras. The MTF compensation (MTFC) technique can effectively optimize the design of dynamic MTFs for GEORSS. The traditional MTFC methods mainly consider the sensor, atmosphere and relative motion of the satellite platform when improving GEORSS image quality. They will introduce new high frequency noise, resulting in image information loss. In this paper, a mixed sparse higher-order non-convex total variation (MS-HONCTV) model-aided MTFC method is proposed. By introducing the group sparse regularization (GSR) term into the MS-HONCTV model, it increases the robustness to noise and hence reduces the degeneration of the MTF produced by satellite’ low pointing stability. The MS-HONCTV model is then applied to solve the problem of image degradation. The quality of remote sensing data is improved by the proposed MTFC and this is achieved without modifying the aperture diameter, focal length, or detector size of the satellite’s optical system. Experimental results show that the proposed MS-HONCTV effectively improves the images’ MTF, SNR, gray mean gradient (GMG) and standard deviation (SD), as evidenced by subjective qualitative analysis and objective quantitative assessments of simulated data, laboratory data, and GF-4 satellite data. Compared with other methods, the SNR of the proposed method is increased by 30%, GMG by 14.21% and SD by 6.3% on average.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助奋斗的马里奥采纳,获得10
2秒前
传奇3应助开朗灵萱采纳,获得10
10秒前
Richard完成签到,获得积分10
12秒前
monica完成签到 ,获得积分10
23秒前
Jessica完成签到,获得积分10
30秒前
orixero应助飞常爱你哦采纳,获得10
47秒前
55秒前
55秒前
1分钟前
浮岫发布了新的文献求助10
1分钟前
浮岫完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
rebeycca发布了新的文献求助10
1分钟前
奋斗的马里奥完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
lei完成签到,获得积分20
2分钟前
跳跃紫真完成签到,获得积分10
2分钟前
CodeCraft应助lei采纳,获得10
2分钟前
大玉124完成签到 ,获得积分10
2分钟前
2分钟前
刘菲特1发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
yr应助科研通管家采纳,获得10
3分钟前
co完成签到,获得积分10
3分钟前
gszy1975发布了新的文献求助10
3分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
3分钟前
3分钟前
3分钟前
跳跃紫真发布了新的文献求助10
3分钟前
LeeHx完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439