已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exposing the Limitations of Molecular Machine Learning with Activity Cliffs

悬崖 机器学习 计算机科学 人工智能 标杆管理 药物发现 深度学习 生物信息学 生物 业务 古生物学 营销
作者
Derek van Tilborg,Alisa Alenicheva,Francesca Grisoni
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.2c01073
摘要

Machine learning has become a crucial tool in drug discovery and chemistry at large, e.g., to predict molecular properties, such as bioactivity, with high accuracy. However, activity cliffs─pairs of molecules that are highly similar in their structure but exhibit large differences in potency─have received limited attention for their effect on model performance. Not only are these edge cases informative for molecule discovery and optimization but also models that are well equipped to accurately predict the potency of activity cliffs have increased potential for prospective applications. Our work aims to fill the current knowledge gap on best-practice machine learning methods in the presence of activity cliffs. We benchmarked a total of 24 machine and deep learning approaches on curated bioactivity data from 30 macromolecular targets for their performance on activity cliff compounds. While all methods struggled in the presence of activity cliffs, machine learning approaches based on molecular descriptors outperformed more complex deep learning methods. Our findings highlight large case-by-case differences in performance, advocating for (a) the inclusion of dedicated "activity-cliff-centered" metrics during model development and evaluation and (b) the development of novel algorithms to better predict the properties of activity cliffs. To this end, the methods, metrics, and results of this study have been encapsulated into an open-access benchmarking platform named MoleculeACE (Activity Cliff Estimation, available on GitHub at: https://github.com/molML/MoleculeACE). MoleculeACE is designed to steer the community toward addressing the pressing but overlooked limitation of molecular machine learning models posed by activity cliffs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助落雪123采纳,获得10
2秒前
李健应助尽低眉采纳,获得30
3秒前
尹宁发布了新的文献求助10
4秒前
LT完成签到,获得积分20
4秒前
Wish发布了新的文献求助10
6秒前
王明磊完成签到 ,获得积分10
6秒前
7秒前
沸腾的大海完成签到,获得积分10
8秒前
小二郎应助依沐采纳,获得10
9秒前
9秒前
思源应助陪七七去旅行采纳,获得10
11秒前
小yi又困啦完成签到,获得积分10
12秒前
852应助1Q84采纳,获得10
13秒前
13秒前
zumii发布了新的文献求助10
13秒前
夜月残阳发布了新的文献求助10
15秒前
ding应助阿飞采纳,获得10
16秒前
17秒前
小马甲应助尹宁采纳,获得10
18秒前
zoujinru发布了新的文献求助10
18秒前
nysyty完成签到,获得积分10
20秒前
尽低眉发布了新的文献求助30
21秒前
笑而不语完成签到 ,获得积分10
23秒前
大个应助沉默妙彤采纳,获得10
23秒前
科研通AI5应助孟繁荣采纳,获得10
24秒前
SYLH应助zumii采纳,获得10
24秒前
26秒前
26秒前
情怀应助zoujinru采纳,获得10
29秒前
成成发布了新的文献求助10
30秒前
33秒前
33秒前
搜集达人应助Cookie采纳,获得10
34秒前
37秒前
Alllllllll发布了新的文献求助10
39秒前
39秒前
nysyty发布了新的文献求助10
39秒前
40秒前
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098347
关于积分的说明 9239077
捐赠科研通 2793297
什么是DOI,文献DOI怎么找? 1532982
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707322