亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition

计算机科学 人工智能 稳健性(进化) 航空影像 最小边界框 可解释性 模式识别(心理学) 目标检测 离群值 计算机视觉 图像(数学) 生物化学 基因 化学
作者
Yiting Li,Qingsong Fan,Haisong Huang,Zhenggong Han,Qiang Gu
出处
期刊:Drones [MDPI AG]
卷期号:7 (5): 304-304 被引量:110
标识
DOI:10.3390/drones7050304
摘要

UAV multitarget detection plays a pivotal role in civil and military fields. Although deep learning methods provide a more effective solution to this task, changes in target size, shape change, occlusion, and lighting conditions from the perspective of drones still bring great challenges to research in this field. Based on the above problems, this paper proposes an aerial image detection model with excellent performance and strong robustness. First, in view of the common problem that small targets in aerial images are prone to misdetection and missed detection, the idea of Bi-PAN-FPN is introduced to improve the neck part in YOLOv8-s. By fully considering and reusing multiscale features, a more advanced and complete feature fusion process is achieved while maintaining the parameter cost as much as possible. Second, the GhostblockV2 structure is used in the backbone of the benchmark model to replace part of the C2f module, which suppresses information loss during long-distance feature transmission while significantly reducing the number of model parameters; finally, WiseIoU loss is used as bounding box regression loss, combined with a dynamic nonmonotonic focusing mechanism, and the quality of anchor boxes is evaluated by using “outlier” so that the detector takes into account different quality anchor boxes to improve the overall performance of the detection task. The algorithm’s performance is compared and evaluated on the VisDrone2019 dataset, which is widely used worldwide, and a detailed ablation experiment, contrast experiment, interpretability experiment, and self-built dataset experiment are designed to verify the effectiveness and feasibility of the proposed model. The results show that the proposed aerial image detection model has achieved obvious results and advantages in various experiments, which provides a new idea for the deployment of deep learning in the field of UAV multitarget detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
31秒前
美味SCI歌单完成签到,获得积分10
36秒前
52秒前
55秒前
1分钟前
活泼莫英完成签到,获得积分10
1分钟前
1分钟前
xfcy完成签到,获得积分10
1分钟前
茶茶完成签到,获得积分10
2分钟前
fcxzvb完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
桐桐应助活泼莫英采纳,获得10
2分钟前
2分钟前
3分钟前
sarmad发布了新的文献求助10
3分钟前
4分钟前
积极的尔白完成签到 ,获得积分10
4分钟前
无花果应助我是站长才怪采纳,获得10
4分钟前
wxyinhefeng完成签到 ,获得积分10
4分钟前
李健应助科研通管家采纳,获得10
4分钟前
英姑应助我是站长才怪采纳,获得10
5分钟前
5分钟前
5分钟前
闪闪的谷梦完成签到 ,获得积分10
5分钟前
活泼莫英发布了新的文献求助10
5分钟前
5分钟前
埃特纳氏完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
汉德萌多林完成签到,获得积分10
7分钟前
7分钟前
张琦完成签到 ,获得积分10
8分钟前
我是站长才怪应助sarmad采纳,获得10
8分钟前
KY Mr.WANG完成签到,获得积分10
8分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334024
捐赠科研通 2575826
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532