Aging Effect–Aware Finite Element Model and Parameter Identification Method of Lithium-Ion Battery

电池(电) 解耦(概率) 有限元法 控制理论(社会学) 锂离子电池 荷电状态 计算机科学 功率(物理) 工程类 结构工程 控制工程 物理 人工智能 热力学 控制(管理)
作者
Aina Tian,Chen Yang,Yang Gao,Yan Jiang,Chun Chang,Lujun Wang,Jiuchun Jiang
出处
期刊:Journal of electrochemical energy conversion and storage [ASME International]
卷期号:20 (3)
标识
DOI:10.1115/1.4055463
摘要

Abstract Battery aging is an inevitable macroscopic phenomenon in the use of the battery, which is characterized by capacity decline and power reduction. If the charging and discharging strategy does not adjust with the aging state, it is easy to cause battery abuse and accelerate the decline. To avoid this situation, the aging model with consideration of the battery degradation is coupled into the pseudo-two-dimensional (P2D) model. An aging effect-aware finite element model that can describe battery physical information accurately is presented in this article. The model parameters are divided into four parts: structure parameters, thermodynamic parameters, kinetic parameters, and aging parameters. The identification experiments are designed based on the characteristics of these types of parameters. The decoupling and parameter identification methods of kinetic parameters according to the response characteristics of each parameter under specific excitation, and state-of-charge (SOC) partitioned range identification technology of aging parameters is proposed and verified. Finally, the aging effect-aware model and the identification parameters are verified under constant current (CC) and different dynamic conditions with different charge rate (C-rate). The ability of the proposed model to track the aging trajectory in the whole life cycle is verified under various cycle conditions. The proposed model can be applied to aging mechanism analysis and health management from point of inner properties of the batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦威风发布了新的文献求助10
刚刚
刚刚
king完成签到,获得积分10
刚刚
qweerrtt发布了新的文献求助10
1秒前
余三浪完成签到,获得积分10
1秒前
2秒前
lixoii发布了新的文献求助20
2秒前
豌豆射手发布了新的文献求助10
3秒前
科研通AI2S应助k7采纳,获得10
3秒前
wszldmn完成签到,获得积分10
3秒前
坚定的亦绿完成签到,获得积分10
4秒前
4秒前
yurh完成签到,获得积分10
4秒前
小朋友完成签到,获得积分10
5秒前
华仔应助小王采纳,获得10
5秒前
彭于晏应助乔乔采纳,获得10
5秒前
5秒前
1199完成签到,获得积分10
5秒前
5秒前
南瓜完成签到 ,获得积分10
6秒前
eric曾完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
韦威风完成签到,获得积分10
9秒前
请叫我风吹麦浪应助cc采纳,获得30
9秒前
所所应助Ll采纳,获得10
9秒前
阳光的道消完成签到,获得积分10
10秒前
10秒前
10秒前
豌豆射手完成签到,获得积分10
11秒前
11秒前
桑桑发布了新的文献求助10
11秒前
领导范儿应助幸福胡萝卜采纳,获得10
12秒前
明理的小甜瓜完成签到,获得积分10
13秒前
13秒前
33333完成签到,获得积分20
13秒前
13秒前
13秒前
756发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762