异质结
光电探测器
光电子学
分解水
光探测
材料科学
光电效应
X射线光电子能谱
紫外线
紫外光电子能谱
化学
光催化
化学工程
生物化学
工程类
催化作用
作者
Xinyi Xue,Chunhui Lu,Mingwei Luo,Taotao Han,Yuqi Liu,Yanqing Ge,Wen Dong,Xinlong Xu
标识
DOI:10.1007/s40843-022-2156-y
摘要
Two-dimensional van der Waals heterostructures have been widely designed and applied to numerous optoelectronic devices such as photoelectrochemical (PEC)-type photodetectors, water splitting, and solar cells. The understanding of the influence of band alignment in type-I heterostructures on the photoelectric response remains incomplete yet essential for designing new optoelectronic devices. Herein, two-step physical vapor deposition is used to construct a type-I SnSe2/ZnS heterostructure, which is confirmed by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy. The type-I heterostructure-based PEC-type photodetector exhibits excellent photoresponse, high stability, and high sensitivity in the ultraviolet-visible range. Furthermore, the photoresponsivity of SnSe2/ZnS is up to 172.60 µA W−1, which is 7.4- and 2.0-fold larger than that of pure ZnS and SnSe2, respectively. Moreover, the SnSe2/ZnS heterostructure possesses high photoelectrocatalytic activity in water splitting, and the total hydrogen production within 2 h is up to 81.25 µmol cm−2. The high PEC-type photodetector and water splitting performances in SnSe2/ZnS are due to the synergistic effect of high light utilization and efficient charge transport. Our work provides a new method for improving photoelectric response by forming type-I heterostructures and for designing high-performance optoelectronic devices for photodetectors and water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI