Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 有机化学 护理部 医学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助呆呆小猪采纳,获得10
刚刚
刚刚
1秒前
3秒前
xixi应助火柴采纳,获得10
3秒前
zpp发布了新的文献求助10
4秒前
马香芦完成签到,获得积分10
5秒前
5秒前
无聊的月饼完成签到 ,获得积分10
5秒前
小兵发布了新的文献求助10
6秒前
6秒前
星星关注了科研通微信公众号
6秒前
7秒前
快乐的石头完成签到 ,获得积分10
7秒前
qichen发布了新的文献求助10
7秒前
Xxx发布了新的文献求助10
7秒前
小朋友发布了新的文献求助10
7秒前
7秒前
想人陪的采蓝完成签到,获得积分20
8秒前
英俊的铭应助跳跃的梦凡采纳,获得10
9秒前
13秒前
史道夫发布了新的文献求助10
13秒前
15秒前
15秒前
cherrychou发布了新的文献求助10
15秒前
16秒前
19秒前
Leorihy19完成签到,获得积分10
19秒前
小萝卜发布了新的文献求助10
19秒前
隐形曼青应助微弱de胖头采纳,获得10
19秒前
19秒前
善学以致用应助Xxx采纳,获得10
20秒前
Sky发布了新的文献求助10
22秒前
伊人心轩发布了新的文献求助10
22秒前
22秒前
积极慕梅应助yxkooo采纳,获得20
24秒前
laity完成签到 ,获得积分10
25秒前
阿军完成签到,获得积分10
25秒前
Sky完成签到,获得积分10
27秒前
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919