Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 有机化学 护理部 医学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
江蹇发布了新的文献求助10
1秒前
2秒前
华仔应助听听采纳,获得10
2秒前
朴实山兰发布了新的文献求助20
5秒前
超帅的行云完成签到,获得积分10
5秒前
yuyan发布了新的文献求助10
7秒前
xia发布了新的文献求助10
7秒前
7秒前
9秒前
江蹇完成签到,获得积分10
10秒前
NexusExplorer应助云海老采纳,获得10
11秒前
12秒前
13秒前
13秒前
欧石楠完成签到 ,获得积分10
14秒前
yuyan完成签到,获得积分10
16秒前
Guai完成签到,获得积分10
16秒前
adam发布了新的文献求助10
16秒前
DengLingjie发布了新的文献求助10
17秒前
甜筒发布了新的文献求助10
19秒前
Libra完成签到,获得积分20
22秒前
量子星尘发布了新的文献求助10
23秒前
谢佩奇发布了新的文献求助10
25秒前
chensongyu完成签到,获得积分10
25秒前
凌儿响叮当完成签到 ,获得积分10
27秒前
斯文败类应助重要谷冬采纳,获得10
27秒前
Akim应助甜筒采纳,获得10
27秒前
feimengxia完成签到 ,获得积分10
28秒前
Akim应助茂飞采纳,获得10
30秒前
30秒前
32秒前
33秒前
充电宝应助xia采纳,获得10
34秒前
谢佩奇完成签到,获得积分10
37秒前
Jackie发布了新的文献求助10
37秒前
研友_LJGXgn完成签到,获得积分10
38秒前
云海老发布了新的文献求助10
40秒前
40秒前
Steve完成签到,获得积分20
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019