Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 医学 护理部 有机化学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分10
2秒前
慕青应助菠萝披萨采纳,获得10
3秒前
九思发布了新的文献求助10
4秒前
林牧完成签到,获得积分10
6秒前
8秒前
大帅哥发布了新的文献求助10
12秒前
大个应助优美的南烟采纳,获得10
12秒前
spzdss发布了新的文献求助150
12秒前
懵懂的曼寒完成签到,获得积分10
16秒前
16秒前
无花果应助u9227采纳,获得10
16秒前
17秒前
黎明发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
浮游应助刘丹丹采纳,获得10
19秒前
Helio发布了新的文献求助10
22秒前
lzl17o8发布了新的文献求助10
22秒前
26秒前
霸气的半烟完成签到,获得积分20
26秒前
fisker完成签到,获得积分10
28秒前
29秒前
fzx完成签到,获得积分10
29秒前
lll发布了新的文献求助10
30秒前
33秒前
33秒前
黎明完成签到,获得积分10
34秒前
fisker发布了新的文献求助10
34秒前
自觉的枕头完成签到,获得积分10
34秒前
35秒前
36秒前
烟花应助大帅哥采纳,获得10
36秒前
37秒前
HalaMadrid完成签到,获得积分10
37秒前
wxsaty完成签到,获得积分10
38秒前
皆可发布了新的文献求助30
39秒前
6666发布了新的文献求助20
40秒前
shareef发布了新的文献求助10
40秒前
40秒前
pluto应助时一采纳,获得10
42秒前
u9227发布了新的文献求助10
43秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986