Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 医学 护理部 有机化学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助就叫柠檬吧采纳,获得10
1秒前
科目三应助正直寄云采纳,获得10
1秒前
mf发布了新的文献求助10
2秒前
2秒前
2秒前
天天向上完成签到,获得积分10
3秒前
3秒前
Z小姐发布了新的文献求助20
4秒前
大块发布了新的文献求助10
4秒前
难过颦发布了新的文献求助10
4秒前
5秒前
学术猩猩发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助司马千筹采纳,获得10
6秒前
zz发布了新的文献求助10
6秒前
8秒前
52251013106发布了新的文献求助10
8秒前
天天向上发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
善学以致用应助董竹君采纳,获得10
11秒前
11秒前
小蘑菇应助锅包肉采纳,获得10
12秒前
13秒前
在水一方应助时尚的青丝采纳,获得10
13秒前
合适冰棍发布了新的文献求助10
14秒前
深情安青应助长情洙采纳,获得10
14秒前
研友_yLpYkn完成签到,获得积分10
15秒前
积极的凌波完成签到,获得积分20
16秒前
16秒前
领导范儿应助Q同学采纳,获得10
16秒前
abcdef发布了新的文献求助10
16秒前
科研狗完成签到 ,获得积分10
17秒前
17秒前
17秒前
Orange应助合适冰棍采纳,获得10
17秒前
倩倩发布了新的文献求助30
18秒前
18秒前
现代访云发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003103
求助须知:如何正确求助?哪些是违规求助? 4247982
关于积分的说明 13234780
捐赠科研通 4046924
什么是DOI,文献DOI怎么找? 2214060
邀请新用户注册赠送积分活动 1224112
关于科研通互助平台的介绍 1144386