Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

对接(动物) 化学 蛋白质-蛋白质相互作用 可解释性 计算生物学 分子识别 药物设计 分子模型 数量结构-活动关系 生物化学 立体化学 人工智能 计算机科学 生物 分子 医学 护理部 有机化学
作者
Songtao Huang,Yanrui Ding
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:20 (12): 1982-1993 被引量:1
标识
DOI:10.2174/1570180819666220819102035
摘要

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs. Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models. Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity. Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively. Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ky完成签到 ,获得积分10
2秒前
datang完成签到,获得积分10
4秒前
6秒前
星辰大海应助搞怪的冰凡采纳,获得10
6秒前
DC-CIK军团完成签到 ,获得积分10
6秒前
Capybara发布了新的文献求助10
6秒前
kiki完成签到,获得积分10
9秒前
azure发布了新的文献求助10
10秒前
丘比特应助Viv采纳,获得10
13秒前
14秒前
害羞大白菜完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
CipherSage应助Capybara采纳,获得10
22秒前
哪吒大闹小布丁完成签到,获得积分10
22秒前
LKSkywalker完成签到,获得积分10
24秒前
Hello应助欢呼山雁采纳,获得10
25秒前
小马甲应助超级清涟采纳,获得10
26秒前
布丁大师完成签到,获得积分10
26秒前
fly圈圈呀完成签到,获得积分10
32秒前
Kkxx发布了新的文献求助10
32秒前
33秒前
Kirin完成签到,获得积分10
34秒前
Capybara完成签到,获得积分10
34秒前
朴素的易槐完成签到 ,获得积分10
35秒前
36秒前
38秒前
39秒前
40秒前
豆豆发布了新的文献求助10
42秒前
欢呼山雁发布了新的文献求助10
43秒前
要努力搞科研啦完成签到,获得积分20
44秒前
gxc完成签到,获得积分20
50秒前
caramel完成签到,获得积分20
54秒前
晚风完成签到,获得积分10
57秒前
搜集达人应助eureka采纳,获得10
58秒前
59秒前
长生完成签到,获得积分10
1分钟前
YaoZhang完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578