TCSD: Triple Complementary Streams Detector for Comprehensive Deepfake Detection

计算机科学 保险丝(电气) 人工智能 探测器 特征(语言学) 模式识别(心理学) 数据挖掘 计算机视觉 机器学习 电信 语言学 哲学 电气工程 工程类
作者
Xiaolong Liu,Yang Yu,Xiaolong Li,Yao Zhao,Guodong Guo
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (6): 1-22 被引量:11
标识
DOI:10.1145/3558004
摘要

Advancements in computer vision and deep learning have made it difficult to distinguish deepfake visual media. While existing detection frameworks have achieved significant performance on challenging deepfake datasets, these approaches consider only a single perspective. More importantly, in urban scenes, neither complex scenarios can be covered by a single view nor can the correlation between multiple datasets of information be well utilized. In this article, to mine the new view for deepfake detection and utilize the correlation of multi-view information contained in images, we propose a novel triple complementary streams detector (TCSD). First, a novel depth estimator is designed to extract depth information (DI), which has not been used in previous methods. Then, to supplement depth information for obtaining comprehensive forgery clues, we consider the incoherence between image foreground and background information (FBI) and the inconsistency between local and global information (LGI). In addition, we designed an attention-based multi-scale feature extraction (MsFE) module to extract more complementary features from DI, FBI, and LGI. Finally, two attention-based feature fusion modules are proposed to adaptively fuse information. Extensive experiment results show that the proposed approach achieves state-of-the-art performance on detecting deepfakes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
震动的嘉懿完成签到 ,获得积分10
1秒前
Hello应助紫心采纳,获得10
1秒前
Zlang应助yehuitao采纳,获得30
1秒前
蛋蛋完成签到 ,获得积分10
1秒前
nannan发布了新的文献求助10
1秒前
2秒前
传奇3应助HaHa采纳,获得10
2秒前
caijinwang完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
从容迎夏发布了新的文献求助10
4秒前
13发布了新的文献求助10
4秒前
小帅完成签到,获得积分10
4秒前
kohu发布了新的文献求助30
5秒前
5秒前
天黑黑发布了新的文献求助10
5秒前
思源应助鲸鱼采纳,获得10
5秒前
5秒前
我是老大应助zyzy1996采纳,获得10
5秒前
6秒前
6秒前
bing完成签到 ,获得积分10
6秒前
6秒前
7秒前
yejian完成签到,获得积分10
7秒前
冷酷的天晴完成签到 ,获得积分10
7秒前
张亚宁完成签到,获得积分20
7秒前
吃不下发布了新的文献求助10
7秒前
7秒前
7秒前
大模型应助小宇宙ZKYYS采纳,获得10
8秒前
8秒前
8秒前
滚滚完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526