TCSD: Triple Complementary Streams Detector for Comprehensive Deepfake Detection

计算机科学 保险丝(电气) 人工智能 探测器 特征(语言学) 模式识别(心理学) 数据挖掘 计算机视觉 机器学习 电信 语言学 哲学 电气工程 工程类
作者
Xiaolong Liu,Yang Yu,Xiaolong Li,Yao Zhao,Guodong Guo
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (6): 1-22 被引量:11
标识
DOI:10.1145/3558004
摘要

Advancements in computer vision and deep learning have made it difficult to distinguish deepfake visual media. While existing detection frameworks have achieved significant performance on challenging deepfake datasets, these approaches consider only a single perspective. More importantly, in urban scenes, neither complex scenarios can be covered by a single view nor can the correlation between multiple datasets of information be well utilized. In this article, to mine the new view for deepfake detection and utilize the correlation of multi-view information contained in images, we propose a novel triple complementary streams detector (TCSD). First, a novel depth estimator is designed to extract depth information (DI), which has not been used in previous methods. Then, to supplement depth information for obtaining comprehensive forgery clues, we consider the incoherence between image foreground and background information (FBI) and the inconsistency between local and global information (LGI). In addition, we designed an attention-based multi-scale feature extraction (MsFE) module to extract more complementary features from DI, FBI, and LGI. Finally, two attention-based feature fusion modules are proposed to adaptively fuse information. Extensive experiment results show that the proposed approach achieves state-of-the-art performance on detecting deepfakes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唉呦嘿完成签到,获得积分10
刚刚
倪冬雪发布了新的文献求助30
刚刚
刚刚
Rubywoo关注了科研通微信公众号
1秒前
Gasol完成签到 ,获得积分10
1秒前
斯文败类应助SCO采纳,获得10
1秒前
3秒前
3秒前
3秒前
星辰大海应助emm采纳,获得10
4秒前
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
zhangfuchao完成签到,获得积分10
7秒前
风中冰香发布了新的文献求助10
7秒前
7秒前
8秒前
邹yang完成签到 ,获得积分10
8秒前
Ayaka完成签到,获得积分10
8秒前
Jasper应助纪你巴采纳,获得10
8秒前
8秒前
8秒前
LeeWX完成签到,获得积分10
8秒前
9秒前
9秒前
星辰大海应助Cx270采纳,获得10
9秒前
9秒前
Youth发布了新的文献求助10
9秒前
kiki发布了新的文献求助10
10秒前
ZYW发布了新的文献求助20
10秒前
10秒前
LeeWX发布了新的文献求助10
11秒前
大卉卉完成签到,获得积分10
11秒前
11秒前
11秒前
石豪有发布了新的文献求助10
12秒前
多伶俐发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218