普鲁士蓝
共沉淀
硫黄
多硫化物
锂硫电池
纳米技术
材料科学
无机化学
电化学
化学
化学工程
电极
电解质
冶金
物理化学
工程类
作者
Meng Du,Pengbiao Geng,Chenxu Pei,Xinyuan Jiang,Yuying Shan,Wenhui Hu,Lubin Ni,Huan Pang
标识
DOI:10.1002/anie.202209350
摘要
The introduction of high-entropy into Prussian blue analogues (PBAs) has yet to attract attention in the field of lithium-sulfur battery materials. Herein, we systematically synthesize a library of PBAs from binary to high-entropy by a facile coprecipitation method. The coordination environment in PBAs is explored by X-ray absorption fine structure spectroscopy, which together with elemental mapping confirm the successful introduction of all metals. Importantly, electrochemical tests demonstrate that high-entropy PBA can serve as polysulfide immobilizer to inhibit shuttle effect and as catalyst to promote polysulfides conversion, thereby boosting its outstanding performance. Additionally, a variety of nanocubic metal oxides from binary to senary are fabricated by using PBAs as sacrificial precursors. We believe that a wide range of new materials obtained from our coprecipitation and pyrolysis methodology can promote further developments in research on PBA systems and sulfur hosts.
科研通智能强力驱动
Strongly Powered by AbleSci AI