RF Fingerprinting Based on Reservoir Computing Using Narrowband Optoelectronic Oscillators

窄带 基带 计算机科学 发射机 卷积神经网络 电子工程 解调 人工神经网络 无线电频率 信号处理 深度学习 指纹识别 计算机硬件 人工智能 指纹(计算) 电信 工程类 数字信号处理 频道(广播) 带宽(计算)
作者
Haoying Dai,Yanne K. Chembo
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (21): 7060-7071 被引量:4
标识
DOI:10.1109/jlt.2022.3198967
摘要

Radiofrequency (RF) fingerprinting refers to a range of technologies that recognize transmitters by their intrinsic hardware-level characteristics. These characteristics are often introduced during the fabrication process and form a unique fingerprint of the transmitter that is very hard to counterfeit. RF fingerprinting often serves as a security measure at the physical-layer of communication networks against potentials attacks. In recent years, neuromorphic computing techniques such as convolutional neural networks (CNNs) have been explored as classifiers for RF fingerprinting. However, in radiofrequency communication networks, the transmitted signals are I/Q modulated on multi-GHz carriers while most conventional machine learning algorithms operate at the baseband. Therefore, the I/Q modulated signals have to be demodulated and converted into compatible formats before applying to these platforms – a procedure that inevitably slows down the processing speed. Moreover, the deep learning technologies often require a large amount of data to train the artificial neural networks (ANNs) while in practice, the available amount of data for a new transmitter is limited. Reservoir computing (RC) provides a relatively simple yet powerful structure that is capable of reaching state-of-the-art performance on several benchmarks. However, traditional digital RC also operates at baseband, which is not suitable for directly processing the I/Q modulated signals. In this article, we propose a reservoir computer based on narrowband optoelectronic oscillator (OEO) that can be utilized to directly classify I/Q modulated signals without the need for demodulation. We successfully train and test our narrowband OEO-based RC on three publicly available benchmarks, namely the FIT/CorteXlab RF fingerprinting dataset, the ORACLE RF fingerprinting dataset, and the AirID RF fingerprinting dataset. We show that for all three datasets, the narrowband OEO-based RC demonstrates competing accuracy with much less training data comparing to CNNs, and achieves an accuracy as high as 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123456发布了新的文献求助10
2秒前
莫寻双完成签到,获得积分10
3秒前
丘比特应助Eric采纳,获得10
3秒前
5秒前
科研通AI2S应助段yt采纳,获得10
7秒前
嘿嘿发布了新的文献求助10
8秒前
xj0806完成签到,获得积分10
9秒前
10秒前
挽风发布了新的文献求助10
11秒前
CHer完成签到,获得积分10
12秒前
donfern发布了新的文献求助10
13秒前
13秒前
13秒前
善学以致用应助cyx2045采纳,获得10
14秒前
期望应助xiongyue采纳,获得10
15秒前
所所应助塔菲尔采纳,获得10
16秒前
我是老大应助PICC采纳,获得10
17秒前
18秒前
hub发布了新的文献求助10
18秒前
可爱天川发布了新的文献求助10
18秒前
丘比特应助李女士采纳,获得10
19秒前
李健的小迷弟应助李女士采纳,获得10
19秒前
19秒前
Cyan完成签到,获得积分10
20秒前
20秒前
一头熊完成签到 ,获得积分10
20秒前
klb13应助温柔的芫采纳,获得10
20秒前
20秒前
繁星发布了新的文献求助10
22秒前
小点点发布了新的文献求助10
23秒前
25秒前
26秒前
28秒前
zxc完成签到,获得积分10
28秒前
29秒前
李李发布了新的文献求助10
29秒前
Akim应助godo采纳,获得10
29秒前
30秒前
塔菲尔发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302103
求助须知:如何正确求助?哪些是违规求助? 2936595
关于积分的说明 8478287
捐赠科研通 2610377
什么是DOI,文献DOI怎么找? 1425135
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646476