RF Fingerprinting Based on Reservoir Computing Using Narrowband Optoelectronic Oscillators

窄带 基带 计算机科学 发射机 卷积神经网络 电子工程 解调 人工神经网络 无线电频率 信号处理 深度学习 指纹识别 计算机硬件 人工智能 指纹(计算) 电信 工程类 数字信号处理 频道(广播) 带宽(计算)
作者
Haoying Dai,Yanne K. Chembo
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (21): 7060-7071 被引量:4
标识
DOI:10.1109/jlt.2022.3198967
摘要

Radiofrequency (RF) fingerprinting refers to a range of technologies that recognize transmitters by their intrinsic hardware-level characteristics. These characteristics are often introduced during the fabrication process and form a unique fingerprint of the transmitter that is very hard to counterfeit. RF fingerprinting often serves as a security measure at the physical-layer of communication networks against potentials attacks. In recent years, neuromorphic computing techniques such as convolutional neural networks (CNNs) have been explored as classifiers for RF fingerprinting. However, in radiofrequency communication networks, the transmitted signals are I/Q modulated on multi-GHz carriers while most conventional machine learning algorithms operate at the baseband. Therefore, the I/Q modulated signals have to be demodulated and converted into compatible formats before applying to these platforms – a procedure that inevitably slows down the processing speed. Moreover, the deep learning technologies often require a large amount of data to train the artificial neural networks (ANNs) while in practice, the available amount of data for a new transmitter is limited. Reservoir computing (RC) provides a relatively simple yet powerful structure that is capable of reaching state-of-the-art performance on several benchmarks. However, traditional digital RC also operates at baseband, which is not suitable for directly processing the I/Q modulated signals. In this article, we propose a reservoir computer based on narrowband optoelectronic oscillator (OEO) that can be utilized to directly classify I/Q modulated signals without the need for demodulation. We successfully train and test our narrowband OEO-based RC on three publicly available benchmarks, namely the FIT/CorteXlab RF fingerprinting dataset, the ORACLE RF fingerprinting dataset, and the AirID RF fingerprinting dataset. We show that for all three datasets, the narrowband OEO-based RC demonstrates competing accuracy with much less training data comparing to CNNs, and achieves an accuracy as high as 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai chen完成签到 ,获得积分0
2秒前
3秒前
FashionBoy应助快乐马采纳,获得10
4秒前
88C真是太神奇啦完成签到,获得积分10
4秒前
潇洒的平松完成签到,获得积分10
5秒前
隐形曼青应助Songsong采纳,获得10
6秒前
7秒前
Orange应助DrYang采纳,获得10
7秒前
8秒前
000发布了新的文献求助10
8秒前
Clover完成签到 ,获得积分10
9秒前
小妮子发布了新的文献求助10
12秒前
还单身的惜文完成签到 ,获得积分10
12秒前
Xiaoxiao举报rh1006求助涉嫌违规
12秒前
Neo完成签到,获得积分10
13秒前
16秒前
二三发布了新的文献求助10
17秒前
Cindy完成签到,获得积分10
17秒前
稳重翠完成签到 ,获得积分10
18秒前
psycho完成签到,获得积分10
19秒前
666发布了新的文献求助10
20秒前
一直完成签到,获得积分20
22秒前
我是老大应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
茶送白粥应助科研通管家采纳,获得10
23秒前
茶送白粥应助科研通管家采纳,获得10
24秒前
茶送白粥应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
24秒前
ED应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
25秒前
Hz发布了新的文献求助10
26秒前
学术小天才完成签到,获得积分10
28秒前
28秒前
明天见发布了新的文献求助10
29秒前
科目三应助666采纳,获得10
30秒前
在水一方应助勤劳糜采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343