A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 古生物学 生物 操作系统
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助哈哈哈哈采纳,获得10
刚刚
小马甲应助俊秀的念薇采纳,获得10
刚刚
子子子子瞻完成签到,获得积分10
刚刚
刚刚
asdfrfg发布了新的文献求助10
刚刚
刚刚
哈哈发布了新的文献求助10
刚刚
李李李er完成签到,获得积分10
1秒前
raemourn完成签到,获得积分10
1秒前
1秒前
1秒前
靓丽的沁发布了新的文献求助10
1秒前
2秒前
2秒前
能干耳机完成签到,获得积分10
2秒前
2秒前
TongXia完成签到,获得积分10
2秒前
2秒前
椰椰完成签到,获得积分10
2秒前
现代的听云完成签到,获得积分20
3秒前
3秒前
3秒前
阳光的小笼包完成签到,获得积分10
3秒前
3秒前
别绪叁仟发布了新的文献求助10
3秒前
标致的山水完成签到 ,获得积分10
4秒前
4秒前
李一一发布了新的文献求助10
4秒前
李李李er发布了新的文献求助10
4秒前
白开水发布了新的文献求助10
4秒前
淡然千山完成签到 ,获得积分10
5秒前
5秒前
在下小李发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
caoyy完成签到,获得积分10
6秒前
张志超发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827