A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 古生物学 生物 操作系统
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超威蓝猫完成签到,获得积分10
1秒前
2秒前
jun发布了新的文献求助10
2秒前
zhangyida完成签到,获得积分10
2秒前
月与海完成签到,获得积分10
3秒前
3秒前
月亮不会奔你而来完成签到,获得积分10
3秒前
Zx_1993给Island D的求助进行了留言
4秒前
画凌烟发布了新的文献求助10
4秒前
丁丁发布了新的文献求助20
4秒前
顺利毕业完成签到,获得积分10
4秒前
斯文败类应助jjj采纳,获得30
4秒前
4秒前
4秒前
老妖完成签到,获得积分20
5秒前
不去的新完成签到,获得积分10
6秒前
脑洞疼应助sumu采纳,获得10
6秒前
Iridesent0v0发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
何哈哈发布了新的文献求助10
9秒前
zhangyida发布了新的文献求助10
9秒前
屋里彩虹完成签到,获得积分10
9秒前
慕青应助畅快大象采纳,获得10
10秒前
SHU发布了新的文献求助10
10秒前
奋斗长颈鹿完成签到,获得积分10
10秒前
10秒前
哟梦完成签到,获得积分10
10秒前
辞忧发布了新的文献求助10
10秒前
胡重威发布了新的文献求助10
11秒前
sunshine完成签到,获得积分20
11秒前
堡堡完成签到,获得积分10
11秒前
NEKO发布了新的文献求助30
12秒前
12秒前
kyf发布了新的文献求助20
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
屋里彩虹发布了新的文献求助10
13秒前
wangjia完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233