已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 生物 操作系统 古生物学
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九日橙完成签到 ,获得积分10
2秒前
3秒前
CC完成签到 ,获得积分10
6秒前
7秒前
8秒前
apple完成签到,获得积分10
14秒前
冷静芹菜完成签到 ,获得积分10
15秒前
17秒前
桐桐应助杜萌萌采纳,获得10
22秒前
Flipped完成签到,获得积分10
23秒前
Seyon发布了新的文献求助10
25秒前
25秒前
大个应助zha采纳,获得10
26秒前
Hello应助lvsehx采纳,获得10
28秒前
晨晨发布了新的文献求助10
30秒前
pterionGao完成签到 ,获得积分10
32秒前
33秒前
勤恳幻然完成签到,获得积分20
35秒前
orixero应助左丘幼旋1采纳,获得10
35秒前
杜萌萌发布了新的文献求助10
37秒前
帅气的沧海完成签到 ,获得积分10
38秒前
38秒前
Eid完成签到,获得积分10
41秒前
42秒前
外向思松关注了科研通微信公众号
42秒前
43秒前
lvsehx发布了新的文献求助10
46秒前
SumLemon发布了新的文献求助10
46秒前
47秒前
左丘幼旋1发布了新的文献求助10
48秒前
49秒前
杜萌萌完成签到,获得积分10
49秒前
51秒前
清新的芷发布了新的文献求助10
54秒前
YUAN121发布了新的文献求助20
54秒前
爆米花应助美好斓采纳,获得10
55秒前
陶醉觅夏发布了新的文献求助200
56秒前
58秒前
1分钟前
开拖拉机的芍药完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171381
求助须知:如何正确求助?哪些是违规求助? 2822343
关于积分的说明 7938824
捐赠科研通 2482830
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627