A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 生物 操作系统 古生物学
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金刚大王完成签到,获得积分10
1秒前
Xl完成签到,获得积分10
2秒前
2秒前
想跟这个世界讲个道理完成签到,获得积分10
3秒前
铜离子发布了新的文献求助10
3秒前
CodeCraft应助黄启烽采纳,获得10
3秒前
4秒前
清嘉完成签到,获得积分10
4秒前
yn完成签到,获得积分10
5秒前
儒雅南风完成签到 ,获得积分10
5秒前
结实的栾完成签到,获得积分10
5秒前
无为完成签到 ,获得积分10
6秒前
做实验太菜完成签到,获得积分10
6秒前
专注鸡完成签到,获得积分10
6秒前
甜甜的铭完成签到,获得积分10
6秒前
yuanyuan完成签到,获得积分10
6秒前
Bit完成签到,获得积分10
7秒前
领导范儿应助啦啦啦采纳,获得10
7秒前
yan完成签到,获得积分10
8秒前
Pursuit发布了新的文献求助10
9秒前
自然怀梦完成签到,获得积分10
10秒前
lss发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
一一完成签到,获得积分10
12秒前
12秒前
格子完成签到,获得积分10
12秒前
12秒前
123完成签到,获得积分10
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
tramp应助科研通管家采纳,获得10
13秒前
tramp应助科研通管家采纳,获得10
13秒前
笨笨棒球应助科研通管家采纳,获得20
13秒前
tramp应助科研通管家采纳,获得20
14秒前
1101592875应助科研通管家采纳,获得10
14秒前
冷傲菠萝完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478