A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 古生物学 生物 操作系统
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
Six_seven发布了新的文献求助10
刚刚
Dawn完成签到,获得积分10
4秒前
浮游应助wrong采纳,获得10
4秒前
酷酷的哲完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
无聊的万天完成签到,获得积分10
6秒前
xiexinyi完成签到,获得积分10
6秒前
7秒前
跳跃的滑板完成签到 ,获得积分10
7秒前
lihaha完成签到 ,获得积分10
8秒前
浮游应助拼搏的璇采纳,获得30
9秒前
dou发布了新的文献求助10
11秒前
123发布了新的文献求助10
12秒前
111发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
Sakura完成签到 ,获得积分10
14秒前
Ava应助碳烤小肥肠采纳,获得10
14秒前
16秒前
16秒前
mortal完成签到,获得积分10
17秒前
17秒前
柯夫子发布了新的文献求助10
18秒前
18秒前
包子完成签到,获得积分10
19秒前
21秒前
21秒前
Ale发布了新的文献求助10
22秒前
CodeCraft应助721采纳,获得10
24秒前
24秒前
白云四季发布了新的文献求助10
26秒前
天行健完成签到,获得积分20
26秒前
存封发布了新的文献求助10
26秒前
二十八画生完成签到 ,获得积分10
27秒前
29秒前
29秒前
完美的tuzi发布了新的文献求助60
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740