亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Hyperspectral Image Classification Model Using Bole Convolution With Three-Direction Attention Mechanism: Small Sample and Unbalanced Learning

计算机科学 高光谱成像 模式识别(心理学) 人工智能 冗余(工程) 卷积(计算机科学) 背景(考古学) 支持向量机 人工神经网络 数据挖掘 古生物学 生物 操作系统
作者
Weiwei Cai,Xin Ning,Guoxiong Zhou,Xiao Bai,Yizhang Jiang,Wei Li,Pengjiang Qian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:28
标识
DOI:10.1109/tgrs.2022.3201056
摘要

Currently, the use of rich spectral and spatial information of hyperspectral images (HSIs) to classify ground objects is a research hotspot. However, the classification ability of existing models is significantly affected by its high data dimensionality and massive information redundancy. Therefore, we focus on the elimination of redundant information and the mining of promising features and propose a novel Bole convolution (BC) neural network with a tandem three-direction attention (TDA) mechanism (BTA-Net) for the classification of HSI. A new BC is proposed for the first time in this algorithm, whose core idea is to enhance effective features and eliminate redundant features through feature punishment and reward strategies. Considering that traditional attention mechanisms often assign weights in a one-direction manner, leading to a loss of the relationship between the spectra, a novel three-direction (horizontal, vertical, and spatial directions) attention mechanism is proposed, and an addition strategy and a maximization strategy are used to jointly assign weights to improve the context sensitivity of spatial–spectral features. In addition, we also designed a tandem TDA mechanism module and combined it with a multiscale BC output to improve classification accuracy and stability even when training samples are small and unbalanced. We conducted scene classification experiments on four commonly used hyperspectral datasets to demonstrate the superiority of the proposed model. The proposed algorithm achieves competitive performance on small samples and unbalanced data, according to the results of comparison and ablation experiments. The source code for BTA-Net can be found at https://github.com/vivitsai/BTA-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的从筠完成签到,获得积分10
3秒前
赵方赢发布了新的文献求助10
3秒前
7秒前
量子星尘发布了新的文献求助10
11秒前
赵方赢完成签到,获得积分20
11秒前
caca完成签到,获得积分0
14秒前
23秒前
美国giao哥完成签到,获得积分10
23秒前
ladder发布了新的文献求助10
28秒前
领导范儿应助ladder采纳,获得10
48秒前
48秒前
科研通AI6应助赵方赢采纳,获得10
50秒前
纸鹤发布了新的文献求助10
52秒前
58秒前
drlanlan发布了新的文献求助10
58秒前
今后应助鹏哥爱科研采纳,获得10
1分钟前
natmed应助ZYP采纳,获得10
1分钟前
1分钟前
1分钟前
纸鹤发布了新的文献求助10
1分钟前
陶醉的羞花完成签到 ,获得积分10
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
清飏应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
清飏应助科研通管家采纳,获得30
1分钟前
清飏应助科研通管家采纳,获得30
1分钟前
清飏应助科研通管家采纳,获得30
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SDUMoist完成签到,获得积分10
1分钟前
Pzj完成签到,获得积分10
1分钟前
wxyshare应助ZYP采纳,获得10
1分钟前
1分钟前
tlj0808发布了新的文献求助20
1分钟前
盛夏如花发布了新的文献求助10
2分钟前
ljhhjl完成签到 ,获得积分10
2分钟前
zhjl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
椰汁发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764785
关于积分的说明 15025394
捐赠科研通 4802996
什么是DOI,文献DOI怎么找? 2567787
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484942