Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database

医学 重症监护室 阿帕奇II 接收机工作特性 观察研究 机器学习 急诊医学 重症监护 临床决策支持系统 逐步回归 人工智能 重症监护医学 内科学 决策支持系统 计算机科学
作者
Siwei Bi,Shanshan Chen,Jingyi Li,Jun Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107115-107115 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107115
摘要

The acute physiology and chronic health evaluation-IV model (APACHE-IV), and the sequential organ failure assessment (SOFA) score are two traditional severity assessment systems that can be applied to cardiac surgery patients admitted to intensive care units (ICUs). However, the performance of machine learning approaches in post cardiovascular surgery (PCS) patients admitted to the ICU remains unknown.The clinical data of adult subjects were collected from the eICU database. Seven models were constructed based on the training set (70% random sample) for predicting hospital mortality, including two traditional models based on APACHE-IV and SOFA scores and five machine learning models. We measured the models' performance in the remaining 30% of the sample by computing AUC-ROC values, prospective prediction results, and decision curves and compared the models with net reclassification improvement.This study included 5860 PCS patients. The AUC-ROC value of the Xgboost model significantly outperformed the APACHE-IV and SOFA scores (0.12 [0.06-0.17] p < 0.01, 0.18 [0.1-0.26] p < 0.01 respectively). The use of ML models would also gain more clinical net benefits than traditional models based on decision curve analysis. There was a significant improvement in integrated discrimination when comparing the backward stepwise linear regression model with the APACHE-IV model (0.11 [0.05, 0.16], p < 0.01) and SOFA model (0.12 [0.06, 0.17], p < 0.01).In conclusion, the predictive ability of ML models was better than that of traditional models. The present study suggested that developing advanced prognosis prediction tools could support clinical decision-making in the ICU for PCS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率白竹发布了新的文献求助10
2秒前
迷路尔曼完成签到,获得积分10
2秒前
攒星星发布了新的文献求助10
2秒前
my发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
科研通AI2S应助deep采纳,获得10
4秒前
ynscw完成签到,获得积分10
4秒前
汪汪淬冰冰完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
CipherSage应助menghongmei采纳,获得10
5秒前
star应助科研通管家采纳,获得10
5秒前
Orange应助1111采纳,获得10
5秒前
ANK应助科研通管家采纳,获得30
5秒前
江雯君发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
君君应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
鱼鱼啊应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
dew应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165