亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database

医学 重症监护室 阿帕奇II 接收机工作特性 观察研究 机器学习 急诊医学 重症监护 临床决策支持系统 逐步回归 人工智能 重症监护医学 内科学 决策支持系统 计算机科学
作者
Siwei Bi,Shanshan Chen,Jingyi Li,Jun Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107115-107115 被引量:6
标识
DOI:10.1016/j.cmpb.2022.107115
摘要

The acute physiology and chronic health evaluation-IV model (APACHE-IV), and the sequential organ failure assessment (SOFA) score are two traditional severity assessment systems that can be applied to cardiac surgery patients admitted to intensive care units (ICUs). However, the performance of machine learning approaches in post cardiovascular surgery (PCS) patients admitted to the ICU remains unknown.The clinical data of adult subjects were collected from the eICU database. Seven models were constructed based on the training set (70% random sample) for predicting hospital mortality, including two traditional models based on APACHE-IV and SOFA scores and five machine learning models. We measured the models' performance in the remaining 30% of the sample by computing AUC-ROC values, prospective prediction results, and decision curves and compared the models with net reclassification improvement.This study included 5860 PCS patients. The AUC-ROC value of the Xgboost model significantly outperformed the APACHE-IV and SOFA scores (0.12 [0.06-0.17] p < 0.01, 0.18 [0.1-0.26] p < 0.01 respectively). The use of ML models would also gain more clinical net benefits than traditional models based on decision curve analysis. There was a significant improvement in integrated discrimination when comparing the backward stepwise linear regression model with the APACHE-IV model (0.11 [0.05, 0.16], p < 0.01) and SOFA model (0.12 [0.06, 0.17], p < 0.01).In conclusion, the predictive ability of ML models was better than that of traditional models. The present study suggested that developing advanced prognosis prediction tools could support clinical decision-making in the ICU for PCS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张完成签到,获得积分10
18秒前
南浔完成签到,获得积分10
19秒前
25秒前
Delight完成签到 ,获得积分10
25秒前
wanci应助田柾国采纳,获得10
27秒前
30秒前
务实的焦完成签到 ,获得积分10
31秒前
36秒前
小蘑菇应助YY采纳,获得10
41秒前
田柾国发布了新的文献求助10
41秒前
efren1806完成签到,获得积分10
43秒前
时尓发布了新的文献求助10
45秒前
LAN完成签到,获得积分10
54秒前
隐形问萍发布了新的文献求助10
56秒前
spark810应助科研通管家采纳,获得30
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
Lucas应助lewis采纳,获得10
1分钟前
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lewis发布了新的文献求助10
1分钟前
张张发布了新的文献求助10
1分钟前
大模型应助张子捷采纳,获得10
1分钟前
所所应助lewis采纳,获得10
1分钟前
时尓关注了科研通微信公众号
1分钟前
追寻的梦凡完成签到 ,获得积分10
2分钟前
2分钟前
时尓发布了新的文献求助10
2分钟前
万能图书馆应助XiaoXiao采纳,获得10
2分钟前
2分钟前
Sammy完成签到,获得积分10
2分钟前
左囧发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
XiaoXiao发布了新的文献求助10
2分钟前
topppppp完成签到,获得积分20
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162280
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899622
捐赠科研通 2472655
什么是DOI,文献DOI怎么找? 1316491
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142