Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database

医学 重症监护室 阿帕奇II 接收机工作特性 观察研究 机器学习 急诊医学 重症监护 临床决策支持系统 逐步回归 人工智能 重症监护医学 内科学 决策支持系统 计算机科学
作者
Siwei Bi,Shanshan Chen,Jingyi Li,Jun Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107115-107115 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107115
摘要

The acute physiology and chronic health evaluation-IV model (APACHE-IV), and the sequential organ failure assessment (SOFA) score are two traditional severity assessment systems that can be applied to cardiac surgery patients admitted to intensive care units (ICUs). However, the performance of machine learning approaches in post cardiovascular surgery (PCS) patients admitted to the ICU remains unknown.The clinical data of adult subjects were collected from the eICU database. Seven models were constructed based on the training set (70% random sample) for predicting hospital mortality, including two traditional models based on APACHE-IV and SOFA scores and five machine learning models. We measured the models' performance in the remaining 30% of the sample by computing AUC-ROC values, prospective prediction results, and decision curves and compared the models with net reclassification improvement.This study included 5860 PCS patients. The AUC-ROC value of the Xgboost model significantly outperformed the APACHE-IV and SOFA scores (0.12 [0.06-0.17] p < 0.01, 0.18 [0.1-0.26] p < 0.01 respectively). The use of ML models would also gain more clinical net benefits than traditional models based on decision curve analysis. There was a significant improvement in integrated discrimination when comparing the backward stepwise linear regression model with the APACHE-IV model (0.11 [0.05, 0.16], p < 0.01) and SOFA model (0.12 [0.06, 0.17], p < 0.01).In conclusion, the predictive ability of ML models was better than that of traditional models. The present study suggested that developing advanced prognosis prediction tools could support clinical decision-making in the ICU for PCS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wcs65948完成签到,获得积分10
1秒前
平淡夏云完成签到,获得积分10
1秒前
1秒前
善学以致用应助源源采纳,获得10
2秒前
渤海少年发布了新的文献求助10
2秒前
上官若男应助仔仔仔平采纳,获得10
2秒前
Ava应助局内人采纳,获得10
2秒前
单薄的凡灵完成签到,获得积分10
2秒前
吉吉国王的跟班完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
康康完成签到,获得积分10
4秒前
yuting发布了新的文献求助30
4秒前
甜蜜的盼望完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
铁柱xh完成签到 ,获得积分10
5秒前
5秒前
漂亮十三关注了科研通微信公众号
5秒前
羊蓝蓝蓝完成签到,获得积分20
5秒前
zhenjl完成签到,获得积分20
5秒前
王贺发布了新的文献求助10
5秒前
zjh发布了新的文献求助10
6秒前
6秒前
7秒前
平常山雁关注了科研通微信公众号
7秒前
Jasper应助lll采纳,获得10
7秒前
8秒前
敬鱼完成签到,获得积分20
8秒前
9秒前
KY2022发布了新的文献求助10
9秒前
zhenjl发布了新的文献求助10
9秒前
cxt发布了新的文献求助10
9秒前
ding应助yy采纳,获得10
9秒前
wanci应助老实秋寒采纳,获得10
9秒前
9秒前
KOBEbeartwo完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227