亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database

医学 重症监护室 阿帕奇II 接收机工作特性 观察研究 机器学习 急诊医学 重症监护 临床决策支持系统 逐步回归 人工智能 重症监护医学 内科学 决策支持系统 计算机科学
作者
Siwei Bi,Shanshan Chen,Jingyi Li,Jun Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107115-107115 被引量:15
标识
DOI:10.1016/j.cmpb.2022.107115
摘要

The acute physiology and chronic health evaluation-IV model (APACHE-IV), and the sequential organ failure assessment (SOFA) score are two traditional severity assessment systems that can be applied to cardiac surgery patients admitted to intensive care units (ICUs). However, the performance of machine learning approaches in post cardiovascular surgery (PCS) patients admitted to the ICU remains unknown.The clinical data of adult subjects were collected from the eICU database. Seven models were constructed based on the training set (70% random sample) for predicting hospital mortality, including two traditional models based on APACHE-IV and SOFA scores and five machine learning models. We measured the models' performance in the remaining 30% of the sample by computing AUC-ROC values, prospective prediction results, and decision curves and compared the models with net reclassification improvement.This study included 5860 PCS patients. The AUC-ROC value of the Xgboost model significantly outperformed the APACHE-IV and SOFA scores (0.12 [0.06-0.17] p < 0.01, 0.18 [0.1-0.26] p < 0.01 respectively). The use of ML models would also gain more clinical net benefits than traditional models based on decision curve analysis. There was a significant improvement in integrated discrimination when comparing the backward stepwise linear regression model with the APACHE-IV model (0.11 [0.05, 0.16], p < 0.01) and SOFA model (0.12 [0.06, 0.17], p < 0.01).In conclusion, the predictive ability of ML models was better than that of traditional models. The present study suggested that developing advanced prognosis prediction tools could support clinical decision-making in the ICU for PCS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助daidai采纳,获得10
10秒前
eliauk发布了新的文献求助10
19秒前
学术交流高完成签到 ,获得积分10
20秒前
22秒前
生信精准科研完成签到,获得积分10
23秒前
Nov_snowr发布了新的文献求助30
27秒前
领导范儿应助哈比人linling采纳,获得10
37秒前
bkagyin应助霏霏不是菲菲采纳,获得30
37秒前
我是老大应助世良采纳,获得10
48秒前
55秒前
55秒前
世良发布了新的文献求助10
58秒前
麻辣香锅发布了新的文献求助10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
eliauk完成签到,获得积分10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助麻辣香锅采纳,获得10
1分钟前
1分钟前
烟花应助哈比人linling采纳,获得10
1分钟前
汉堡包应助墨绝采纳,获得10
1分钟前
丘比特应助墨绝采纳,获得30
1分钟前
1分钟前
Owen应助史育川采纳,获得10
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
1分钟前
墨绝发布了新的文献求助30
2分钟前
李爱国应助熊二采纳,获得10
2分钟前
2分钟前
领导范儿应助麻辣香锅采纳,获得10
2分钟前
叽叽发布了新的文献求助10
2分钟前
熊二完成签到,获得积分20
2分钟前
2分钟前
熊二发布了新的文献求助10
2分钟前
安详的从筠完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650843
求助须知:如何正确求助?哪些是违规求助? 4781799
关于积分的说明 15052655
捐赠科研通 4809623
什么是DOI,文献DOI怎么找? 2572434
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487437