Machine learning-based prediction of in-hospital mortality for post cardiovascular surgery patients admitting to intensive care unit: a retrospective observational cohort study based on a large multi-center critical care database

医学 重症监护室 阿帕奇II 接收机工作特性 观察研究 机器学习 急诊医学 重症监护 临床决策支持系统 逐步回归 人工智能 重症监护医学 内科学 决策支持系统 计算机科学
作者
Siwei Bi,Shanshan Chen,Jingyi Li,Jun Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107115-107115 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107115
摘要

The acute physiology and chronic health evaluation-IV model (APACHE-IV), and the sequential organ failure assessment (SOFA) score are two traditional severity assessment systems that can be applied to cardiac surgery patients admitted to intensive care units (ICUs). However, the performance of machine learning approaches in post cardiovascular surgery (PCS) patients admitted to the ICU remains unknown.The clinical data of adult subjects were collected from the eICU database. Seven models were constructed based on the training set (70% random sample) for predicting hospital mortality, including two traditional models based on APACHE-IV and SOFA scores and five machine learning models. We measured the models' performance in the remaining 30% of the sample by computing AUC-ROC values, prospective prediction results, and decision curves and compared the models with net reclassification improvement.This study included 5860 PCS patients. The AUC-ROC value of the Xgboost model significantly outperformed the APACHE-IV and SOFA scores (0.12 [0.06-0.17] p < 0.01, 0.18 [0.1-0.26] p < 0.01 respectively). The use of ML models would also gain more clinical net benefits than traditional models based on decision curve analysis. There was a significant improvement in integrated discrimination when comparing the backward stepwise linear regression model with the APACHE-IV model (0.11 [0.05, 0.16], p < 0.01) and SOFA model (0.12 [0.06, 0.17], p < 0.01).In conclusion, the predictive ability of ML models was better than that of traditional models. The present study suggested that developing advanced prognosis prediction tools could support clinical decision-making in the ICU for PCS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柒柒捌捌完成签到,获得积分10
1秒前
花花发布了新的文献求助10
1秒前
1秒前
sherlock发布了新的文献求助10
1秒前
2秒前
此间少年郎完成签到 ,获得积分20
2秒前
2秒前
彭于晏应助aaa采纳,获得10
2秒前
2秒前
王汉堡完成签到,获得积分10
2秒前
Ava应助小菜鸟采纳,获得10
3秒前
2E发布了新的文献求助10
3秒前
张美丽完成签到,获得积分10
3秒前
ming发布了新的文献求助10
3秒前
科研通AI5应助张棋欢采纳,获得10
3秒前
4秒前
想要礼物的艾斯米拉达完成签到,获得积分10
4秒前
贺梦妍发布了新的文献求助10
5秒前
天蓝完成签到,获得积分10
5秒前
fanfan44390发布了新的文献求助10
6秒前
CCH完成签到,获得积分10
6秒前
着急的书白完成签到,获得积分20
7秒前
tracy10完成签到,获得积分10
7秒前
zzj完成签到,获得积分10
7秒前
7秒前
敬鱼完成签到,获得积分10
8秒前
风风发布了新的文献求助10
8秒前
科目三应助00采纳,获得10
8秒前
可爱的函函应助liulangnmg采纳,获得20
9秒前
科研通AI6应助咖啡豆采纳,获得50
9秒前
老干部发布了新的文献求助10
9秒前
9秒前
敬鱼发布了新的文献求助10
11秒前
雾里完成签到,获得积分10
11秒前
CCH发布了新的文献求助10
11秒前
12秒前
李健应助王灿章采纳,获得10
12秒前
科研通AI5应助月亮采纳,获得10
12秒前
小王小王发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874