Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning

人工智能 再现性 稳健性(进化) 计算机科学 威尔科克森符号秩检验 概化理论 试验装置 数据集 模式识别(心理学) 置信区间 头影测量 正颌外科 口腔正畸科 核医学 医学 数学 统计 基因 曼惠特尼U检验 化学 生物化学
作者
Gauthier Dot,Thomas Schouman,Shang‐Hung Chang,Frédéric Rafflenbeul,Adeline Kerbrat,Philippe Rouch,Laurent Gajny
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1380-1387 被引量:39
标识
DOI:10.1177/00220345221112333
摘要

The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. Although promising methods were suggested to localize 3D landmarks automatically, concerns about robustness and generalizability restrain their clinical use. Consequently, highly trained operators remain needed to perform manual landmarking. In this retrospective diagnostic study, we aimed to train and evaluate a deep learning (DL) pipeline based on SpatialConfiguration-Net for automatic localization of 3D cephalometric landmarks on computed tomography (CT) scans. A retrospective sample of consecutive presurgical CT scans was randomly distributed between a training/validation set (n = 160) and a test set (n = 38). The reference data consisted of 33 landmarks, manually localized once by 1 operator(n = 178) or twice by 3 operators (n = 20, test set only). After inference on the test set, 1 CT scan showed "very low" confidence level predictions; we excluded it from the overall analysis but still assessed and discussed the corresponding results. The model performance was evaluated by comparing the predictions with the reference data; the outcome set included localization accuracy, cephalometric measurements, and comparison to manual landmarking reproducibility. On the hold-out test set, the mean localization error was 1.0 ± 1.3 mm, while success detection rates for 2.0, 2.5, and 3.0 mm were 90.4%, 93.6%, and 95.4%, respectively. Mean errors were -0.3 ± 1.3° and -0.1 ± 0.7 mm for angular and linear measurements, respectively. When compared to manual reproducibility, the measurements were within the Bland-Altman 95% limits of agreement for 91.9% and 71.8% of skeletal and dentoalveolar variables, respectively. To conclude, while our DL method still requires improvement, it provided highly accurate 3D landmark localization on a challenging test set, with a reliability for skeletal evaluation on par with what clinicians obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
1秒前
4秒前
121关闭了121文献求助
5秒前
今后应助水滇采纳,获得10
5秒前
李健应助务实的犀牛采纳,获得10
5秒前
Lucas应助可咳咳咳采纳,获得10
6秒前
顺利秋灵发布了新的文献求助10
6秒前
Yuanyuan发布了新的文献求助10
7秒前
8秒前
汉堡包应助Bao采纳,获得10
9秒前
沙里发布了新的文献求助10
11秒前
11秒前
坦率晓霜完成签到,获得积分10
12秒前
lsn关闭了lsn文献求助
12秒前
李健的小迷弟应助杭谷波采纳,获得30
12秒前
12秒前
13秒前
Akim应助顺利秋灵采纳,获得10
14秒前
完美世界应助子云采纳,获得10
15秒前
zooro发布了新的文献求助10
16秒前
着急的雪冥完成签到,获得积分10
17秒前
胡维红发布了新的文献求助10
17秒前
希望天下0贩的0应助lf-leo采纳,获得10
18秒前
沙里完成签到,获得积分10
20秒前
呵呵发布了新的文献求助10
20秒前
无花果应助迷人听双采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
吃的饭广泛应助布洛芬采纳,获得10
23秒前
23秒前
端庄冬日完成签到,获得积分10
24秒前
慕青应助zooro采纳,获得10
25秒前
25秒前
简简单单完成签到,获得积分10
27秒前
小蘑菇应助胡维红采纳,获得10
28秒前
共享精神应助可耐的青雪采纳,获得10
28秒前
子云发布了新的文献求助10
28秒前
29秒前
32秒前
YC驳回了小二郎应助
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959371
求助须知:如何正确求助?哪些是违规求助? 3505602
关于积分的说明 11124845
捐赠科研通 3237384
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844