A Novel Penalized Inverse-Variance Weighted Estimator for Mendelian Randomization with Applications to COVID-19 Outcomes

孟德尔随机化 2019年冠状病毒病(COVID-19) 估计员 差异(会计) 数学 统计 2019-20冠状病毒爆发 反向 计量经济学 应用数学 医学 生物 遗传学 内科学 爆发 病毒学 几何学 疾病 会计 遗传变异 基因 基因型 传染病(医学专业) 业务
作者
Siqi Xu,Peng Wang,Wing K. Fung,Zhonghua Liu
出处
期刊:Biometrics [Wiley]
卷期号:79 (3): 2184-2195 被引量:22
标识
DOI:10.1111/biom.13732
摘要

Abstract Mendelian randomization utilizes genetic variants as instrumental variables (IVs) to estimate the causal effect of an exposure variable on an outcome of interest even in the presence of unmeasured confounders. However, the popular inverse-variance weighted (IVW) estimator could be biased in the presence of weak IVs, a common challenge in MR studies. In this article, we develop a novel penalized inverse-variance weighted (pIVW) estimator, which adjusts the original IVW estimator to account for the weak IV issue by using a penalization approach to prevent the denominator of the pIVW estimator from being close to zero. Moreover, we adjust the variance estimation of the pIVW estimator to account for the presence of balanced horizontal pleiotropy. We show that the recently proposed debiased IVW (dIVW) estimator is a special case of our proposed pIVW estimator. We further prove that the pIVW estimator has smaller bias and variance than the dIVW estimator under some regularity conditions. We also conduct extensive simulation studies to demonstrate the performance of the proposed pIVW estimator. Furthermore, we apply the pIVW estimator to estimate the causal effects of five obesity-related exposures on three coronavirus disease 2019 (COVID-19) outcomes. Notably, we find that hypertensive disease is associated with an increased risk of hospitalized COVID-19; and peripheral vascular disease and higher body mass index are associated with increased risks of COVID-19 infection, hospitalized COVID-19, and critically ill COVID-19.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾顾发布了新的文献求助10
2秒前
AFsumo完成签到 ,获得积分10
2秒前
思源应助朱朱采纳,获得10
4秒前
ChouNen完成签到,获得积分10
6秒前
8秒前
天冬完成签到,获得积分10
9秒前
汉堡包应助刘晶采纳,获得30
10秒前
13秒前
科研通AI2S应助北风采纳,获得10
13秒前
36456657应助闲杂人等采纳,获得10
14秒前
汉堡包应助单纯的思松采纳,获得30
15秒前
灵巧尔芙完成签到 ,获得积分10
19秒前
小王完成签到 ,获得积分10
22秒前
23秒前
汉堡包应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得30
26秒前
坚强亦丝应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
kkdsseed应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
27秒前
怕黑蓝发布了新的文献求助30
27秒前
毛豆应助粗犷的山芙采纳,获得10
28秒前
咸鱼完成签到 ,获得积分10
28秒前
无情的瑾瑜完成签到,获得积分10
28秒前
29秒前
29秒前
迅速的月光完成签到 ,获得积分10
29秒前
科研通AI2S应助北风采纳,获得10
30秒前
30秒前
32秒前
阳和启蛰完成签到 ,获得积分10
32秒前
32秒前
晓晓雪完成签到 ,获得积分10
32秒前
34秒前
九日完成签到,获得积分10
34秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967