材料科学
串联
钙钛矿(结构)
光伏
硅
光电子学
薄脆饼
氧化铟锡
纳米技术
晶体硅
钙钛矿太阳能电池
能量转换效率
光伏系统
图层(电子)
电气工程
化学工程
复合材料
工程类
作者
Lin Mao,Tian Yang,Hao Zhang,Jianhua Shi,Yuchao Hu,Peng Zeng,Faming Li,Jue Gong,Xiaoyu Fang,Yinqing Sun,Xiaochun Liu,Junlin Du,Anjun Han,Liping Zhang,Wenzhu Liu,Fanying Meng,Xudong Cui,Zhengxin Liu,Mingzhen Liu
标识
DOI:10.1002/adma.202206193
摘要
Perovskite/silicon tandem solar cells are promising avenues for achieving high-performance photovoltaics with low costs. However, the highest certified efficiency of perovskite/silicon tandem devices based on economically matured silicon heterojunction technology (SHJ) with fully textured wafer is only 25.2% due to incompatibility between the limitation of fabrication technology which is not compatible with the production-line silicon wafer. Here, a molecular-level nanotechnology is developed by designing NiOx /2PACz ([2-(9H-carbazol-9-yl) ethyl]phosphonic acid) as an ultrathin hybrid hole transport layer (HTL) above indium tin oxide (ITO) recombination junction, to serve as a vital pivot for achieving a conformal deposition of high-quality perovskite layer on top. The NiOx interlayer facilitates a uniform self-assembly of 2PACz molecules onto the fully textured surface, thus avoiding direct contact between ITO and perovskite top-cell for a minimal shunt loss. As a result of such interfacial engineering, the fully textured perovskite/silicon tandem cells obtain a certified efficiency of 28.84% on a 1.2-cm2 masked area, which is the highest performance to date based on the fully textured, production-line compatible SHJ. This work advances commercially promising photovoltaics with high performance and low costs by adopting a meticulously designed HTL/perovskite interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI