TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency

计算机科学 清脆的 变压器 卷积神经网络 编码 Cas9 引导RNA 人工智能 序列标记 计算生物学 机器学习 生物 遗传学 工程类 基因 电压 电气工程 系统工程 任务(项目管理)
作者
Yun-Qi Wan,Zhenran Jiang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1518-1528 被引量:11
标识
DOI:10.1109/tcbb.2022.3201631
摘要

CRISPR/Cas9 is a widely used genome editing tool for site-directed modification of deoxyribonucleic acid (DNA) nucleotide sequences. However, how to accurately predict and evaluate the on- and off-target effects of single guide RNA (sgRNA) is one of the key problems for CRISPR/Cas9 system. Using computational methods to obtain high cell-specific sensitivity and specificity is a prerequisite for the optimal design of sgRNAs. Inspired by the work of predecessors, we found that sgRNA on-target knockout efficacy was not only related to the original sequence but also affected by important biological features. Hence, we introduce a novel approach called TransCrispr, which integrates Transformer and convolutional neural network (CNN) architecture to predict sgRNA knockout efficacy. Firstly, we encode the sequence data and send the transformed sgRNA sequence, positional information, and biological features into the network as input. Then, the convolutional neural network will automatically learn an appropriate feature representation for the sgRNA sequence and combine it with the positional information for self-attention learning of the Transformer. Finally, a regression score is generated by predicting biological features. Experiments on seven public datasets illustrate that TransCrispr outperforms state-of-the-art methods in terms of prediction accuracy and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助jiabaoyu采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得50
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
快乐滑板应助科研通管家采纳,获得30
2秒前
dfdvv发布了新的文献求助10
2秒前
lalala发布了新的文献求助10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
4秒前
zyz924发布了新的文献求助10
4秒前
4秒前
JamesPei应助和谐行恶采纳,获得10
5秒前
科目三应助JIU夭采纳,获得10
5秒前
juliar完成签到 ,获得积分10
6秒前
6秒前
称心怀蕾完成签到 ,获得积分10
7秒前
唯一完成签到,获得积分10
7秒前
Hemin发布了新的文献求助10
7秒前
8秒前
9秒前
CC发布了新的文献求助10
9秒前
冷静靖荷应助LHS采纳,获得10
9秒前
小木匠发布了新的文献求助10
9秒前
10秒前
juliar关注了科研通微信公众号
11秒前
CodeCraft应助橙子采纳,获得10
11秒前
jiabaoyu发布了新的文献求助10
11秒前
12秒前
淡淡铃铛发布了新的文献求助30
13秒前
13秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399