亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Experimental and numerical investigation of energy absorption of CFRP/AL bionic tubes inspired by lotus stem structure

材料科学 莲花 复合材料 吸收(声学) 植物 生物
作者
Xicheng Qi,Rongchao Jiang,Shihao Cao,Guodong Wu,Haixia Sun
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.29805
摘要

Abstract Inspired by the natural structure of the lotus stem, this paper proposes a CFRP/AL bionic multi‐cell hybrid thin‐walled tube (BMCHT) and studies its energy absorption characteristics under axial crushing experiments. Firstly, four different types of CFRP/AL hybrid thin‐walled tubes were designed based on the lotus stem structure, and their deformation modes and energy absorption performance under axial crushing experiments were observed. Secondly, based on the deformation mode of BMCHT under axial crushing experiments, the theoretical mean crushing force expression of BMCHT was derived, and the mean crushing force predicted by the theoretical prediction model was in good agreement with the experimental results. In addition, by establishing the finite element model of BMCHT, a 6‐factor 3‐level orthogonal test was designed and conducted to explore the influence of the geometric parameters of the BMCHT on the energy absorption performance. The orthogonal test results show that the thickness of the aluminum sheet and the number of ribs have the most significant influence on the energy absorption characteristics of the BMCHT tube. In summary, the research results of this paper have important implications for the application and design of CFRP/metal hybrid thin‐walled structures in energy absorption protection devices. Highlights Propose a CFRP/AL bionic tube inspired by Lotus stem structures. Derive the theoretical model of thin‐walled structures proposed in this paper. Reveal the interactive effect and energy absorption mechanisms of structures. Investigate the effects of geometric parameters on crashworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiger完成签到,获得积分10
2秒前
3秒前
97完成签到,获得积分10
3秒前
6秒前
鱼鱼鱼完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
13秒前
量子星尘发布了新的文献求助10
22秒前
31秒前
量子星尘发布了新的文献求助10
40秒前
54秒前
量子星尘发布了新的文献求助10
54秒前
54秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
tonight完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225404
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188