Constructing the 3D Spatial Distribution of the HCHO/NO2 Ratio via Satellite Observation and Machine Learning Model

卫星 空间分布 计算机科学 分布(数学) 人工智能 环境科学 遥感 工程类 地理 数学 航空航天工程 数学分析
作者
Zhiwen Jiang,Shanshan Wang,Yuhao Yan,S. K. Zhang,Ruibin Xue,Chuanqi Gu,Jian Zhu,Jiaqi Liu,Bin Zhou
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c12362
摘要

The satellite-based tropospheric column ratio of HCHO to NO2 (FNR) is widely used to diagnose ozone formation sensitivity; however, its representation of surface conditions remains controversial. In this study, an approach to construct the 3D spatial distribution of the FNR in the lower troposphere was proposed. Based on satellite and multiaxes-differential Optical Absorption Spectroscopy (MAX-DOAS) data, the horizontal and vertical distributions of the FNR have been respectively obtained. To further enhance the generalizability of this approach, we also reproduced the vertical profiles of the FNR using a machine learning model (Bagged trees) and feature variables. Here, using the three-dimensional distribution of the FNR during the summer of 2019 as an example, a fourth-order polynomial relationship was found between the reconstruction factors (fcol_i) and altitudes, demonstrating a correlation coefficient of 0.98. Utilizing this established relationship, a significant difference was found between the reconstructed surface FNR and the satellite column FNR, with the former decreasing by 56.9%. Moreover, the reconstructed 3D spatial distribution of the FNR for the summers from 2018 to 2022 revealed a trend over the five years in Shanghai of the ozone formation control regimes gradually shifting toward the transition and NOx-limited regimes. Through this newly established approach, not only can the accuracy of identifying surface ozone sensitivity be enhanced from the spaced observation, but also it helps in gaining a comprehensive understanding of the ozone photochemical formation mechanisms in the vertical direction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
八九完成签到,获得积分10
刚刚
共享精神应助腼腆的又晴采纳,获得10
1秒前
可爱的函函应助keyz采纳,获得10
1秒前
SYLH应助liuyu采纳,获得10
1秒前
2秒前
2秒前
共享精神应助铜豌豆采纳,获得10
2秒前
3秒前
3秒前
zzzcxxx发布了新的文献求助50
4秒前
隐形曼青应助布洛芬采纳,获得10
4秒前
5秒前
包容灵松发布了新的文献求助10
6秒前
dengy发布了新的文献求助10
6秒前
wuqian发布了新的文献求助10
7秒前
cdragon发布了新的文献求助10
7秒前
zho发布了新的文献求助10
7秒前
Gustavo发布了新的文献求助10
8秒前
9秒前
千堆雪发布了新的文献求助10
9秒前
明亮灭绝发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
cmw完成签到,获得积分10
12秒前
12秒前
林夕少爷完成签到,获得积分10
12秒前
夕赣发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
14秒前
打打应助HZHZHZ采纳,获得10
14秒前
科研通AI2S应助Kk采纳,获得10
15秒前
flowey完成签到,获得积分10
16秒前
Gustavo完成签到,获得积分10
16秒前
16秒前
调研昵称发布了新的文献求助30
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474656
求助须知:如何正确求助?哪些是违规求助? 3066757
关于积分的说明 9100781
捐赠科研通 2758095
什么是DOI,文献DOI怎么找? 1513343
邀请新用户注册赠送积分活动 699504
科研通“疑难数据库(出版商)”最低求助积分说明 699016