In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells

钝化 量子点 太阳能电池 材料科学 能量转换效率 纳米技术 纳米晶 化学 光电子学 图层(电子)
作者
Qi Xiao,Bing Xia,Peilin Liu,Yang Yang,Gaoyuan Yang,Jing Liu,Shuaicheng Lu,Xuezhi Zhao,Ciyu Ge,Duo Chen,Junrui Yang,Guijie Liang,Kanghua Li,Xinzheng Lan,Zewen Xiao,Jianbing Zhang,Liang Gao,Jiang Tang
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:248: 112040-112040 被引量:4
标识
DOI:10.1016/j.solmat.2022.112040
摘要

PbS colloidal quantum dots (CQDs) have been widely applied in infrared (IR) solar cells, as they can broaden the photon conversion region beyond 1100 nm, which can help promote an extra 6% of power conversion efficiency (PCE) as bottom subcells for silicon solar cell. Although halide liquid exchange is the dominant passivation strategy for CQDs, it is difficult to passivate all the surface defects, especially for IR CQD, which leaves the main limitation for improving PCE. Here, a facile in-situ solution-processed patch-passivation strategy was first proposed for developing efficient PbS CQD IR solar cells. A typical Lewis base triphenylphosphine oxide (TPPO) was added to I−/Br− capped PbS CQDs, aiming at passivation with uncoordinated Pb2+ as a “patch-ligand”. As a result, the phosphorus oxygen bond coordination could help suppress the non-radiative recombination in CQD films. The TPPO-passivated devices delivered an IR PCE as high as 1.36% under silicon-filtered AM 1.5G, along with a promising open-circuit voltage (VOC) of 0.44 V, both of which are the highest among other single-junction solar cells with a band gap of ∼0.95 eV. The significant VOC and fill factor (FF) enhancement can be attributed to the decrease in defect density and faster charge transport in TPPO-passivated devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
dd完成签到 ,获得积分10
1秒前
1秒前
allofme完成签到,获得积分10
1秒前
lingyu完成签到 ,获得积分10
2秒前
科研通AI2S应助雨声采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
小蘑菇应助Smile采纳,获得10
4秒前
合适小刺猬完成签到,获得积分20
4秒前
5秒前
7秒前
akiyy发布了新的文献求助10
7秒前
上官若男应助dangan采纳,获得10
7秒前
7秒前
7秒前
NiKkKoO发布了新的文献求助10
10秒前
Yan发布了新的文献求助10
10秒前
liu发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助傅逊采纳,获得10
13秒前
文献直达发布了新的文献求助10
14秒前
14秒前
15秒前
我有点儿困了完成签到,获得积分10
16秒前
小蘑菇应助akiyy采纳,获得10
16秒前
来日可追给瞬间de回眸的求助进行了留言
16秒前
17秒前
17秒前
ilvxgee完成签到,获得积分10
17秒前
shinhung发布了新的文献求助10
17秒前
17秒前
NiKkKoO完成签到,获得积分10
17秒前
湜迩发布了新的文献求助10
19秒前
火以敬发布了新的文献求助10
20秒前
20秒前
21秒前
来日可追应助搞怪的元瑶采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561407
求助须知:如何正确求助?哪些是违规求助? 3135053
关于积分的说明 9410808
捐赠科研通 2835483
什么是DOI,文献DOI怎么找? 1558462
邀请新用户注册赠送积分活动 728229
科研通“疑难数据库(出版商)”最低求助积分说明 716729