Directed evolution of diacetylchitobiose deacetylase via high-throughput droplet sorting with a novel, bacteria-based biosensor

分类 单元格排序 生物传感器 吞吐量 高通量筛选 排序算法 化学 流式细胞术 纳米技术 生物系统 计算机科学 生物化学 材料科学 生物 细胞 分子生物学 电信 程序设计语言 无线
作者
Guoyun Sun,Yaokang Wu,Ziyang Huang,Yanfeng Liu,Jianghua Li,Guocheng Du,Xueqin Lv,Long Liu
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:219: 114818-114818 被引量:19
标识
DOI:10.1016/j.bios.2022.114818
摘要

Numerous biological disciplines rely on high-throughput cell sorting. Flow cytometry, the current gold standard, is capable of ultrahigh-throughput cell sorting, but measurements are primarily limited to cell size and surface marker. Droplet sorting technology is gaining increasing attention with the ability to provide an individual environment for the analysis of single-cell secretion. Although various droplet detecting methods, such as fluorescence, absorbance, mass spectrum, imaging analysis, have been developed for droplet sorting, it remains challenging to establish high-throughput sorting methods for numerous analytes. We aim to develop a high-throughput sorting system based on the glucosamine (GlcN) measurement for the directed evolution of diacetylchitobiose deacetylase (Dac), the key enzyme for GlcN production. To overcome the limitation that no high-throughput sorting system existed for GlcN, we designed a novel bacteria-based biosensor capable of converting GlcN to a positively correlated fluorescence signal. Through characterization and optimization, it was possible to detect GlcN in droplets for high-throughput droplet sorting. We recovered the best Dac mutant S60I/R157T/F168S after sorting ∼0.2 million Dac mutants; its activity was 48.6 ± 1.5 U/mL, which was 1.8-times that of our previously discovered Dac mutant R157T (27.2 ± 1.8 U/mL). This result successfully demonstrated the combination of high-throughput droplet sorting technology and a bacteria-based biosensor, which could facilitate the industrial production of GlcN and serve as a model for similar droplet sorting applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助哇晒采纳,获得10
刚刚
刚刚
打打应助阳光的道消采纳,获得10
1秒前
2秒前
fanfan完成签到,获得积分10
3秒前
波妞发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
fjnm发布了新的文献求助10
5秒前
浮浮世世发布了新的文献求助10
6秒前
6秒前
Wei完成签到,获得积分10
8秒前
8秒前
9秒前
liamddd完成签到 ,获得积分10
11秒前
半农完成签到,获得积分0
11秒前
Sun完成签到,获得积分20
12秒前
12秒前
啊啾发布了新的文献求助60
12秒前
13秒前
Wwww发布了新的文献求助10
13秒前
shadow完成签到,获得积分10
13秒前
13秒前
无语的宛白完成签到 ,获得积分10
14秒前
笑点低的衬衫完成签到,获得积分10
14秒前
人123456发布了新的文献求助10
15秒前
DG发布了新的文献求助10
16秒前
16秒前
研友_VZG7GZ应助52hzzz采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
lily发布了新的文献求助10
17秒前
孙智远完成签到 ,获得积分10
19秒前
彭凯发布了新的文献求助10
20秒前
超级的绿凝完成签到,获得积分10
21秒前
李健应助小叶子采纳,获得10
22秒前
无语的宛白关注了科研通微信公众号
22秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
星辰大海应助1101592875采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131