Directed evolution of diacetylchitobiose deacetylase via high-throughput droplet sorting with a novel, bacteria-based biosensor

分类 单元格排序 生物传感器 吞吐量 高通量筛选 排序算法 化学 流式细胞术 纳米技术 生物系统 计算机科学 生物化学 材料科学 生物 细胞 分子生物学 电信 程序设计语言 无线
作者
Guoyun Sun,Yaokang Wu,Ziyang Huang,Yanfeng Liu,Jianghua Li,Guocheng Du,Xueqin Lv,Long Liu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:219: 114818-114818 被引量:14
标识
DOI:10.1016/j.bios.2022.114818
摘要

Numerous biological disciplines rely on high-throughput cell sorting. Flow cytometry, the current gold standard, is capable of ultrahigh-throughput cell sorting, but measurements are primarily limited to cell size and surface marker. Droplet sorting technology is gaining increasing attention with the ability to provide an individual environment for the analysis of single-cell secretion. Although various droplet detecting methods, such as fluorescence, absorbance, mass spectrum, imaging analysis, have been developed for droplet sorting, it remains challenging to establish high-throughput sorting methods for numerous analytes. We aim to develop a high-throughput sorting system based on the glucosamine (GlcN) measurement for the directed evolution of diacetylchitobiose deacetylase (Dac), the key enzyme for GlcN production. To overcome the limitation that no high-throughput sorting system existed for GlcN, we designed a novel bacteria-based biosensor capable of converting GlcN to a positively correlated fluorescence signal. Through characterization and optimization, it was possible to detect GlcN in droplets for high-throughput droplet sorting. We recovered the best Dac mutant S60I/R157T/F168S after sorting ∼0.2 million Dac mutants; its activity was 48.6 ± 1.5 U/mL, which was 1.8-times that of our previously discovered Dac mutant R157T (27.2 ± 1.8 U/mL). This result successfully demonstrated the combination of high-throughput droplet sorting technology and a bacteria-based biosensor, which could facilitate the industrial production of GlcN and serve as a model for similar droplet sorting applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
科研通AI2S应助qiu采纳,获得10
刚刚
常温可乐应助qiu采纳,获得10
刚刚
yayisheng发布了新的文献求助10
1秒前
3秒前
陈静静发布了新的文献求助10
3秒前
liuxinyu发布了新的文献求助10
3秒前
LHL发布了新的文献求助10
3秒前
4秒前
淡定元珊完成签到,获得积分10
4秒前
5秒前
今后应助雷霆爆爆凯采纳,获得10
5秒前
小蘑菇应助山苍梓采纳,获得10
5秒前
7秒前
qiu完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Owen应助多摩川的烟花少年采纳,获得10
8秒前
12关闭了12文献求助
9秒前
qiucheng1227发布了新的文献求助10
9秒前
科研通AI6应助yayisheng采纳,获得10
9秒前
11秒前
11秒前
李牧发布了新的文献求助10
12秒前
12秒前
64658应助沧海一声笑采纳,获得10
13秒前
13秒前
浮游应助嘟噜采纳,获得10
13秒前
兴奋的若菱完成签到 ,获得积分10
13秒前
14秒前
dxm发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
16秒前
17秒前
林鑫璐发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355