Toward Intelligent Fashion Design: A Texture and Shape Disentangled Generative Adversarial Network

轮廓 纹理(宇宙学) 计算机科学 人工智能 过程(计算) 生成对抗网络 模式识别(心理学) 服装 相似性(几何) 人工神经网络 生成语法 计算机视觉 图像(数学) 考古 历史 操作系统
作者
Han Yan,Haijun Zhang,Jianyang Shi,Jianghong Ma,Xiaofei Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (3): 1-23 被引量:14
标识
DOI:10.1145/3567596
摘要

Texture and shape in fashion, constituting essential elements of garments, characterize the body and surface of the fabric and outline the silhouette of clothing, respectively. The selection of texture and shape plays a critical role in the design process, as they largely determine the success of a new design for fashion items. In this research, we propose a texture and shape disentangled generative adversarial network (TSD-GAN) to perform “intelligent” design with the transformation of texture and shape in fashion items. Our TSD-GAN aims to learn how to disentangle the features of texture and shape of different fashion items in an unsupervised manner. Specifically, a fashion attribute encoder is developed to decompose the input fashion items into independent representations of texture and shape. Then, to learn the coarse or fine styles hidden in the features of texture and shape, a texture mapping network and a shape mapping network are proposed to disentangle the features into different hierarchical representations. The different hierarchical representations of texture and shape are then fed into a multi-factor-based generator to generate mixed-style fashion items. In addition, a multi-discriminator framework is developed to distinguish the authenticity and texture similarity between the generated images and the real images. Experimental results on different fashion categories demonstrate that our proposed TSD-GAN may be useful for assisting designers to accomplish the design process by transforming the texture and shape of fashion items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzz发布了新的文献求助30
1秒前
专注的猎豹完成签到 ,获得积分10
2秒前
2秒前
上进生发布了新的文献求助10
3秒前
6秒前
孤独盼望完成签到,获得积分10
6秒前
星辰大海应助八大山人采纳,获得10
6秒前
6秒前
星辰大海应助paws采纳,获得10
7秒前
Akim应助彩色的不可采纳,获得10
8秒前
9秒前
现代的无春完成签到,获得积分20
9秒前
大壮发布了新的文献求助10
11秒前
桑梓发布了新的文献求助10
11秒前
L77发布了新的文献求助10
12秒前
suxin发布了新的文献求助10
12秒前
Owen应助西海小甜豆采纳,获得10
12秒前
夏青荷发布了新的文献求助10
13秒前
修仙应助科研通管家采纳,获得10
14秒前
14秒前
破伤疯应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
修仙应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
tianzml0应助科研通管家采纳,获得20
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
修仙应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234