Dynamic feature extraction and recognition of flow states in vaneless space of a prototype reversible pump turbine in generating mode based on variational mode decomposition and energy index

模式(计算机接口) 支持向量机 特征向量 流量(数学) 能量(信号处理) 涡轮机 特征向量 希尔伯特-黄变换 分类器(UML) 控制理论(社会学) 计算机科学 特征提取 数学 模式识别(心理学) 算法 物理 机械 人工智能 工程类 机械工程 统计 量子力学 控制(管理) 操作系统
作者
Xianghao Zheng,Mengyu Lu,Hao Li,Yuning Zhang,Jinwei Li,Yuning Zhang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:55: 105821-105821 被引量:21
标识
DOI:10.1016/j.est.2022.105821
摘要

Dynamic feature extraction of pressure fluctuation signals and recognition of flow states in vaneless space have important engineering significances to guarantee the operational stability of the prototype reversible pump turbine (RPT) in the pumped hydro energy storage power station. In the present paper, in order to carry out accurate dynamic feature extraction of the flow states in the vaneless space, a method based on variational mode decomposition (VMD), energy index (EI) and support vector machine (SVM) is proposed. During the analysis procedure of pressure fluctuation signals, VMD can greatly avoid the mode mixing phenomenon, which often occurs in conventional empirical mode decomposition (EMD). After VMD analysis, several mode components with strong physical significances and separated central frequencies are obtained. Then, the EI of each mode component based on VMD is calculated and screened out. The EIs of the first three mode components are further constructed as the eigenvector that can accurately reflect different flow states in the vaneless space of the RPT. In addition, the intelligent classifier of SVM is employed to identify three types of flow states. The above eigenvectors can be employed as the input vectors of SVM. The average recognition results of 10 times show that the correct recognition rate of the proposed VMD-EI-SVM method (98.67 %) is higher than that of the EMD-EI-SVM method (88.00 %), which is more suitable for engineering applications. • A method of dynamic feature extraction is proposed based on energy index of variational mode. • Effective eigenvector is established to reflect different flow states in vaneless space of prototype reversible pump turbine. • Recognition and classification of different flow states are successfully realized in support vector machine. • Analysis results of proposed method are better than those based on empirical mode decomposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cya发布了新的文献求助10
刚刚
Mira完成签到,获得积分10
刚刚
刚刚
搜集达人应助裴秀智采纳,获得30
1秒前
Steven发布了新的文献求助10
1秒前
2秒前
明明明发布了新的文献求助10
2秒前
JamesPei应助ccyy采纳,获得10
2秒前
棋士发布了新的文献求助10
2秒前
美好易完成签到,获得积分10
3秒前
科研通AI2S应助枫溪采纳,获得10
3秒前
完美世界应助闫永洁采纳,获得10
3秒前
刁弘睿完成签到,获得积分10
4秒前
hq发布了新的文献求助10
4秒前
深情安青应助猜不猜不采纳,获得10
4秒前
田园镇完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
宋真玉完成签到,获得积分10
5秒前
完美世界应助cg666采纳,获得10
6秒前
猫猫无敌发布了新的文献求助10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
危机的阁应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
研友_Z60ObL完成签到,获得积分10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
mm应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425