Dynamic feature extraction and recognition of flow states in vaneless space of a prototype reversible pump turbine in generating mode based on variational mode decomposition and energy index

模式(计算机接口) 支持向量机 特征向量 流量(数学) 能量(信号处理) 涡轮机 特征向量 希尔伯特-黄变换 分类器(UML) 控制理论(社会学) 计算机科学 特征提取 数学 模式识别(心理学) 算法 物理 机械 人工智能 工程类 机械工程 统计 量子力学 控制(管理) 操作系统
作者
Xianghao Zheng,Mengyu Lu,Hao Li,Yuning Zhang,Jinwei Li,Yuning Zhang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:55: 105821-105821 被引量:21
标识
DOI:10.1016/j.est.2022.105821
摘要

Dynamic feature extraction of pressure fluctuation signals and recognition of flow states in vaneless space have important engineering significances to guarantee the operational stability of the prototype reversible pump turbine (RPT) in the pumped hydro energy storage power station. In the present paper, in order to carry out accurate dynamic feature extraction of the flow states in the vaneless space, a method based on variational mode decomposition (VMD), energy index (EI) and support vector machine (SVM) is proposed. During the analysis procedure of pressure fluctuation signals, VMD can greatly avoid the mode mixing phenomenon, which often occurs in conventional empirical mode decomposition (EMD). After VMD analysis, several mode components with strong physical significances and separated central frequencies are obtained. Then, the EI of each mode component based on VMD is calculated and screened out. The EIs of the first three mode components are further constructed as the eigenvector that can accurately reflect different flow states in the vaneless space of the RPT. In addition, the intelligent classifier of SVM is employed to identify three types of flow states. The above eigenvectors can be employed as the input vectors of SVM. The average recognition results of 10 times show that the correct recognition rate of the proposed VMD-EI-SVM method (98.67 %) is higher than that of the EMD-EI-SVM method (88.00 %), which is more suitable for engineering applications. • A method of dynamic feature extraction is proposed based on energy index of variational mode. • Effective eigenvector is established to reflect different flow states in vaneless space of prototype reversible pump turbine. • Recognition and classification of different flow states are successfully realized in support vector machine. • Analysis results of proposed method are better than those based on empirical mode decomposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风完成签到,获得积分10
刚刚
1秒前
和谐的映梦完成签到,获得积分10
1秒前
Astoria完成签到,获得积分10
1秒前
活力鸡完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Jerome发布了新的文献求助10
4秒前
布曲完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
coollzl完成签到 ,获得积分10
7秒前
小王完成签到 ,获得积分10
8秒前
9秒前
一水独流完成签到,获得积分10
9秒前
百里幻翠完成签到,获得积分10
10秒前
搜集达人应助Jerome采纳,获得10
10秒前
凡事发生必有利于我完成签到,获得积分10
12秒前
今后应助chunyan_sysu采纳,获得10
12秒前
13秒前
逍遥子完成签到,获得积分10
14秒前
完美世界应助大狒狒采纳,获得10
15秒前
尤瑟夫完成签到 ,获得积分10
15秒前
大气思柔完成签到 ,获得积分10
15秒前
ccc完成签到,获得积分10
16秒前
wjw发布了新的文献求助10
16秒前
壁虎君完成签到,获得积分10
17秒前
17秒前
Chase完成签到,获得积分10
18秒前
杨玲完成签到 ,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
尚影芷完成签到,获得积分10
20秒前
Liu完成签到 ,获得积分10
21秒前
林好人完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
枕月听松完成签到,获得积分10
22秒前
chunyan_sysu完成签到,获得积分10
22秒前
ninaxieuuu发布了新的文献求助10
23秒前
马淑贤完成签到 ,获得积分10
23秒前
研友_Ljb0qL完成签到,获得积分10
23秒前
mengmenglv完成签到 ,获得积分0
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071