已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How managers approach data analytics: a typology through a Resource Orchestration perspective

分析 编配 类型学 知识管理 资源(消歧) 数据科学 独创性 透视图(图形) 业务 计算机科学 营销 定性研究 社会学 艺术 音乐剧 计算机网络 社会科学 人工智能 人类学 视觉艺术
作者
Jonathan Peterson,Loubna Tahssain-Gay,David Salvetat,Fabienne Perez,Sophie Hennekam
出处
期刊:Management Decision [Emerald (MCB UP)]
卷期号:61 (5): 1225-1243 被引量:6
标识
DOI:10.1108/md-03-2022-0316
摘要

Purpose This article aims to examine the factors that influence how managers approach data analytics. Design/methodology/approach The authors draw on content analysis of 34 in-depth interviews with managers in various sectors in France. Findings Using Resource Orchestration Theory as the theoretical lens, the findings show that an understanding of the importance of data analytics, having the skills to effectively use data analytics and the capability to integrate data analytics throughout organizations impact the approach adopted by managers. Based on these interrelated factors, a typology of four different approaches is identified: buyer-users, segmenters, promoters and implementers. Research limitations/implications The authors' study reflects results from multiple industries instead of one particular sector. Delving deeper into the practices of distinct sectors with respect to the authors' typology would be of interest. Practical implications The study points to the role of managers and more specifically managers' perception of the opportunities and challenges related to data analytics. These perceptions emerge in managers' skills and capacity to understand and integrate dimensions of data analytics that go beyond one's areas of expertise in order to create capabilities towards an organization's advantage. Originality/value The authors contribute by revealing three interrelated factors influencing how managers approach data analytics in managers' organizations. The authors address the need expressed by practitioners to better identify factors responsible for adoption and effective use of data analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼子酱完成签到,获得积分10
1秒前
科研小白发布了新的文献求助10
1秒前
田様应助ShellyHan采纳,获得10
1秒前
兴奋半雪完成签到,获得积分10
3秒前
Jasper应助jumao1999采纳,获得10
3秒前
4秒前
大模型应助少一点丶天分采纳,获得10
4秒前
幸福大白发布了新的文献求助10
4秒前
5秒前
sxc110完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助无疆_行者采纳,获得10
7秒前
SYLH应助贰拾陆采纳,获得10
7秒前
煞笔导去死啊完成签到,获得积分10
7秒前
包容雨柏发布了新的文献求助10
7秒前
8秒前
9秒前
landsky完成签到,获得积分20
9秒前
ocean发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
w。发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
幸福大白发布了新的文献求助10
15秒前
16秒前
dongdong完成签到,获得积分10
16秒前
17秒前
17秒前
louqianqian发布了新的文献求助10
18秒前
ShellyHan发布了新的文献求助10
18秒前
过河小卒完成签到 ,获得积分10
19秒前
清秀网络发布了新的文献求助10
19秒前
清森发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555408
求助须知:如何正确求助?哪些是违规求助? 3131038
关于积分的说明 9389777
捐赠科研通 2830505
什么是DOI,文献DOI怎么找? 1556071
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750