已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate band gap prediction based on an interpretable Δ-machine learning

材料科学 机器学习 人工智能 模式识别(心理学) 计算机科学
作者
Lingyao Zhang,Tianhao Su,Musen Li,Fanhao Jia,Shunbo Hu,Peihong Zhang,Wei Ren
出处
期刊:Materials today communications [Elsevier]
卷期号:33: 104630-104630 被引量:11
标识
DOI:10.1016/j.mtcomm.2022.104630
摘要

Most materials science datasets are not so large that the accuracy of machine learning (ML) models is relatively limited if only simple features are used. Here, we constructed an interpretable ∆-machine learning (∆-ML) model to connect the hybrid functional HSE bandgap ( E g HSE ) with the PBE functional bandgap ( E g PBE ). The former can reproduce the band gap comparable with experiments, but the computational cost is much more challenging. The training is based on our high-throughput calculations on a set of two-dimensional semiconductors. Four complex descriptors, all based on the E g PBE are constructed using the sure independence screening and sparsifying operator (SISSO) algorithm. Using these descriptors, the ∆-ML can accurately predict the E g HSE of test set with a determination coefficient (R 2 ) of 0.96. The error satisfies a normal distribution with a mean of zero. We provide a direct functional relationship between input descriptors and target properties. We find that E g HSE and the 5/6 th power of E g PBE show a significant linear correlation, which may guide rapid prediction of E g HSE from E g PBE for materials with a E g HSE greater than 0.22 eV. We also discussed the correlation between the atomic radius and the E g HSE . Our work will provide an effective and interpretable model to construct the optimal physical descriptors for ML prediction on bandgaps in screening massive new 2D materials research. • Constructing an interpretable ∆-machine learning (∆-ML) model to connect the hybrid functional E g HSE with the E g PBE . • SISSO descriptor D 3 = E g PBE 5 / 6 can predict the E g HSE of 2D-semiconductors using equation E g HSE = D 3 ×1.55+0.22. • SISSO descriptor D 1 shows the atomic volume negatively correlated to E g HSE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
五十完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
赘婿应助Ts采纳,获得10
4秒前
科目三应助Asia采纳,获得10
5秒前
甜甜世立发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
莉莉子完成签到,获得积分10
7秒前
陈俞完成签到,获得积分10
8秒前
choi发布了新的文献求助10
8秒前
阳阳发布了新的文献求助10
9秒前
谢却荼蘼发布了新的文献求助10
10秒前
Jaden发布了新的文献求助10
11秒前
。。完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
14秒前
科研通AI5应助一一采纳,获得10
15秒前
科研通AI5应助汉堡麻麻采纳,获得20
16秒前
魔幻马里奥完成签到,获得积分10
16秒前
满满发布了新的文献求助30
17秒前
18秒前
20秒前
YiPeng发布了新的文献求助10
20秒前
冰棒比冰冰完成签到 ,获得积分10
23秒前
风中珩完成签到 ,获得积分10
23秒前
syr完成签到 ,获得积分10
23秒前
科研通AI5应助呼昂黄采纳,获得10
24秒前
25秒前
tingting发布了新的文献求助10
25秒前
27秒前
蓝白啦完成签到,获得积分10
27秒前
星辰大海应助明明勇勇乐采纳,获得10
28秒前
清爽谷秋完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Effects of surfactant concentration on the microstructures of TiO2 hollow spheres by hydrothermal method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561630
求助须知:如何正确求助?哪些是违规求助? 3135215
关于积分的说明 9411529
捐赠科研通 2835748
什么是DOI,文献DOI怎么找? 1558583
邀请新用户注册赠送积分活动 728383
科研通“疑难数据库(出版商)”最低求助积分说明 716806