Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 电信 天文
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔难敌发布了新的文献求助10
1秒前
1秒前
黑大帅发布了新的文献求助10
1秒前
amber发布了新的文献求助10
1秒前
美文完成签到 ,获得积分10
1秒前
2秒前
linmo发布了新的文献求助10
2秒前
卡皮巴拉发布了新的文献求助10
2秒前
3秒前
3秒前
FashionBoy应助phero采纳,获得10
3秒前
4秒前
LY完成签到 ,获得积分10
4秒前
halosheep发布了新的文献求助10
5秒前
榕榕榕发布了新的文献求助10
6秒前
JamesPei应助Vicky采纳,获得10
6秒前
CodeCraft应助Della666采纳,获得10
7秒前
7秒前
干不二发布了新的文献求助30
7秒前
7秒前
迷路柜子完成签到,获得积分10
8秒前
9秒前
慕青应助荞面小肉包采纳,获得10
9秒前
卡皮巴拉完成签到,获得积分10
9秒前
陈晓迪1992完成签到,获得积分10
9秒前
orixero应助amber采纳,获得10
10秒前
科目三应助万刈采纳,获得10
11秒前
12秒前
Str0n发布了新的文献求助10
12秒前
QAQ发布了新的文献求助10
13秒前
领导范儿应助夜之樱花采纳,获得10
14秒前
14秒前
ssffzb2008完成签到,获得积分10
14秒前
SCINEXUS应助鱼鱼玉玉米采纳,获得30
15秒前
hhhhhhhhhh发布了新的文献求助30
15秒前
keepmoving_12完成签到 ,获得积分10
16秒前
16秒前
17秒前
sjsjjj完成签到,获得积分20
17秒前
laoxiaozi发布了新的文献求助30
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075929
求助须知:如何正确求助?哪些是违规求助? 2728863
关于积分的说明 7506362
捐赠科研通 2377068
什么是DOI,文献DOI怎么找? 1260391
科研通“疑难数据库(出版商)”最低求助积分说明 610974
版权声明 597164