Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sawako完成签到,获得积分10
刚刚
1秒前
许自通完成签到,获得积分10
1秒前
2秒前
阿谈完成签到 ,获得积分10
2秒前
洪武完成签到,获得积分10
2秒前
暴富小羊完成签到,获得积分10
2秒前
Daisy发布了新的文献求助10
2秒前
3秒前
3秒前
ccccccp发布了新的文献求助10
3秒前
早睡早起完成签到,获得积分10
3秒前
鹿鸣鱼跃发布了新的文献求助10
4秒前
4秒前
4秒前
精明的老九完成签到 ,获得积分20
4秒前
chuchen123完成签到,获得积分10
4秒前
粥游天下发布了新的文献求助10
4秒前
明理听莲完成签到,获得积分20
4秒前
5秒前
5秒前
Hanoi347应助芷莯采纳,获得10
5秒前
病理委托发布了新的文献求助10
5秒前
smh完成签到,获得积分10
5秒前
6秒前
6秒前
玥越发布了新的文献求助10
6秒前
6秒前
无花果应助Darlene采纳,获得10
7秒前
wan关闭了wan文献求助
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
黔北胡歌完成签到,获得积分10
7秒前
陆离完成签到 ,获得积分10
7秒前
漂亮白云发布了新的文献求助10
7秒前
李雅琪发布了新的文献求助10
7秒前
顾矜应助HYH采纳,获得30
8秒前
研友_Zb0a4L发布了新的文献求助30
8秒前
清秀尔竹完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494