Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 电信 天文
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的一曲完成签到,获得积分10
刚刚
1秒前
英俊的铭应助wu采纳,获得10
1秒前
认真的飞扬完成签到,获得积分10
1秒前
1秒前
雪白的西牛完成签到,获得积分20
1秒前
芋头完成签到,获得积分10
1秒前
ntxiaohu完成签到,获得积分10
2秒前
四火完成签到,获得积分10
2秒前
2秒前
一裤子灰完成签到,获得积分10
2秒前
SamuelLiu完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
8R60d8应助松子采纳,获得10
3秒前
3秒前
我来回收数据完成签到,获得积分10
4秒前
欣忆完成签到 ,获得积分10
4秒前
复原乳完成签到,获得积分10
4秒前
5秒前
四火发布了新的文献求助10
5秒前
Rui发布了新的文献求助10
5秒前
白宝宝北北白应助dfggg采纳,获得10
6秒前
阳光海云发布了新的文献求助50
6秒前
小胖鱼关注了科研通微信公众号
6秒前
昏睡的眼神完成签到 ,获得积分10
6秒前
NexusExplorer应助南乔采纳,获得10
6秒前
杜嘟嘟发布了新的文献求助10
6秒前
完美世界应助April采纳,获得10
7秒前
提手旁辰完成签到,获得积分20
7秒前
能干的邹完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
酒九完成签到,获得积分10
8秒前
刺槐完成签到,获得积分10
8秒前
Owen应助LLKK采纳,获得30
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740