亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyzzz应助张浩采纳,获得10
42秒前
1分钟前
1分钟前
wangzai发布了新的文献求助10
1分钟前
赘婿应助堪冥采纳,获得10
1分钟前
wangzai完成签到,获得积分10
1分钟前
荷兰香猪完成签到,获得积分10
1分钟前
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
Tobby发布了新的文献求助20
1分钟前
时间煮雨我煮鱼完成签到,获得积分10
1分钟前
Tobby完成签到,获得积分10
1分钟前
Voyager发布了新的文献求助10
2分钟前
2分钟前
咸鱼lmye发布了新的文献求助10
2分钟前
3分钟前
咸鱼lmye完成签到 ,获得积分20
3分钟前
wyz完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
Voyager发布了新的文献求助50
3分钟前
4分钟前
4分钟前
领导范儿应助老橘子采纳,获得30
4分钟前
4分钟前
堪冥发布了新的文献求助10
4分钟前
Rebeccaiscute完成签到 ,获得积分10
5分钟前
堪冥完成签到,获得积分20
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
Lucas应助沉默的倔驴采纳,获得30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI6.1应助清雨采纳,获得10
5分钟前
6分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746922
求助须知:如何正确求助?哪些是违规求助? 5440291
关于积分的说明 15356030
捐赠科研通 4886949
什么是DOI,文献DOI怎么找? 2627491
邀请新用户注册赠送积分活动 1575931
关于科研通互助平台的介绍 1532729