Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰完成签到,获得积分10
刚刚
刚刚
h31318927发布了新的文献求助10
1秒前
孙丫丫丫丫丫完成签到,获得积分20
1秒前
2秒前
2秒前
优雅的小白完成签到,获得积分10
3秒前
wanci应助gangstashit采纳,获得10
4秒前
Ava应助minggalaxy007采纳,获得10
4秒前
小张发布了新的文献求助10
4秒前
taozi完成签到,获得积分0
5秒前
5秒前
bai发布了新的文献求助100
5秒前
6秒前
6秒前
6秒前
shine发布了新的文献求助10
6秒前
kk发布了新的文献求助10
7秒前
itsdatou完成签到,获得积分10
8秒前
8秒前
小马甲应助Maryam采纳,获得10
8秒前
9秒前
9秒前
9秒前
云淡风轻发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
democienceek发布了新的文献求助10
10秒前
11秒前
文静千凡发布了新的文献求助10
11秒前
Joy发布了新的文献求助10
12秒前
粒粒发布了新的文献求助150
12秒前
1111发布了新的文献求助10
13秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助30
14秒前
粒粒发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316