亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_xnE65Z完成签到 ,获得积分10
29秒前
48秒前
科研通AI6应助酷炫画板采纳,获得10
1分钟前
科研通AI6应助酷炫画板采纳,获得10
1分钟前
完美世界应助外星人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
外星人发布了新的文献求助10
1分钟前
外星人完成签到,获得积分10
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
physicalproblem完成签到,获得积分10
2分钟前
3分钟前
酷炫画板发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
上官若男应助ceeray23采纳,获得20
3分钟前
3分钟前
Jarvis应助没有昵称采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
酷炫画板发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
陆上飞完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432470
求助须知:如何正确求助?哪些是违规求助? 4545019
关于积分的说明 14195123
捐赠科研通 4464404
什么是DOI,文献DOI怎么找? 2447078
邀请新用户注册赠送积分活动 1438433
关于科研通互助平台的介绍 1415264