Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔樱桃发布了新的文献求助10
1秒前
锌小子完成签到,获得积分10
2秒前
2秒前
舒服的醉卉完成签到,获得积分10
2秒前
2秒前
manjusaka发布了新的文献求助10
2秒前
黄经亮完成签到,获得积分10
3秒前
3秒前
222完成签到 ,获得积分10
3秒前
黑豆完成签到,获得积分10
3秒前
4秒前
李健应助5High_0采纳,获得10
4秒前
mmm关闭了mmm文献求助
4秒前
4秒前
共享精神应助暮商零七采纳,获得10
5秒前
JamesPei应助Dabaozi采纳,获得10
5秒前
6秒前
6秒前
烟花应助光亮的思柔采纳,获得10
7秒前
隐形曼青应助年轻的烨华采纳,获得10
7秒前
温水完成签到,获得积分10
7秒前
斋藤飞鸟完成签到,获得积分10
7秒前
7秒前
jue发布了新的文献求助10
7秒前
7秒前
feng发布了新的文献求助10
7秒前
夏沫发布了新的文献求助10
8秒前
苏生鑫发布了新的文献求助10
8秒前
8秒前
8秒前
情怀应助温柔樱桃采纳,获得10
8秒前
manjusaka完成签到,获得积分10
9秒前
9秒前
学术疯子发布了新的文献求助10
9秒前
劣根发布了新的文献求助10
9秒前
9秒前
wen发布了新的文献求助10
10秒前
桐伶完成签到,获得积分20
10秒前
Dabaozi完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884713
求助须知:如何正确求助?哪些是违规求助? 4169858
关于积分的说明 12939294
捐赠科研通 3930463
什么是DOI,文献DOI怎么找? 2156559
邀请新用户注册赠送积分活动 1174925
关于科研通互助平台的介绍 1079670