Extending neural radiance fields (NeRF) for synthetic aperture radar (SAR) novel image generation

光辉 合成孔径雷达 计算机科学 人工智能 深度学习 计算机视觉 遥感 雷达成像 雷达 人工神经网络 分类器(UML) 卫星 地质学 物理 天文 电信
作者
William E. Snyder,Stephen DelMarco,Dylan Snover,Amit Bhatia,Scott Kuzdeba
标识
DOI:10.1117/12.2666925
摘要

An important application of deep learning classifiers is to recognize vehicles or ships in satellite images. Neural Radiance Field (NeRF) methods apply a limited number of 2D electro-optical (EO) views of an object to learn its 3D shape and view-dependent radiance properties. The resulting latent model generates novel views for training a deep learning classifier. Space-based synthetic aperture radar (SAR) sensors present a new, useful source of wide-area imagery. Because SAR phenomenology and geometry are different from EO, we construct a suitable NeRF-like approach for SAR and demonstrate generation of realistic simulated SAR imagery..Several commercial and military applications classify vehicles or ships in satellite images. In many cases, it is infeasible to acquire looks at the objects over the wide range of views and conditions needed for machine learning classifier training. Neural Radiance Fields (NeRF) and other related methods apply a limited number of 2D views of an object to learn its 3D shape and view-dependent radiance properties. One application of these techniques is to generate additional, novel views of objects for training deep learning classifiers. Current NeRF and NeRF-like methods have been demonstrated with electro-optical (EO) imagery. The emergence of space-based synthetic aperture radar (SAR) imaging sensors presents a new, useful source of wide-area imagery with day/night, all-weather commercial and military applications. Because SAR imaging phenomenology and projection geometry are different from EO, the application of NeRF-like methods to generate novel SAR images of objects for training a classifier presents new challenges. For example, unlike EO, the mono-static SAR illumination source moves with the sensor view geometry. In addition, the 2D SAR image projection is angle-range, not angle-angle. In this paper, we evaluate the salient differences between EO and SAR, and construct a processing pipeline to generate realistic synthetic SAR imagery. The synthetic SAR imagery provides additional training data, augmenting collected image data, for machine learning-based Automatic Target Recognition (ATR) algorithms. We provide examples of synthetic SAR image creation using this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min完成签到,获得积分10
刚刚
楠阿楠完成签到 ,获得积分10
刚刚
子车茗应助哇哈哈哈哈哈采纳,获得30
刚刚
刚刚
头哥应助MiManchi采纳,获得10
1秒前
李健应助zz采纳,获得10
1秒前
1秒前
1秒前
重楼远志完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
Young应助时间采纳,获得10
2秒前
2秒前
小巧吐司完成签到,获得积分10
2秒前
3秒前
IceShock完成签到,获得积分10
3秒前
白蒲桃完成签到 ,获得积分10
3秒前
炙热面包完成签到,获得积分20
3秒前
大胆的如凡完成签到,获得积分10
4秒前
5秒前
你怎么睡得着觉完成签到,获得积分10
5秒前
可爱的函函应助Mrsummer采纳,获得10
5秒前
6秒前
Atopos发布了新的文献求助10
6秒前
ZFY关闭了ZFY文献求助
6秒前
6秒前
支安白发布了新的文献求助10
7秒前
7秒前
炙热面包发布了新的文献求助20
7秒前
7秒前
苏silence发布了新的文献求助10
7秒前
张锐斌完成签到,获得积分10
7秒前
594778089完成签到,获得积分20
7秒前
豆包完成签到,获得积分10
7秒前
shan完成签到,获得积分10
8秒前
Owen应助缥缈的青旋采纳,获得10
8秒前
dadabad完成签到 ,获得积分10
8秒前
凝若霜晨发布了新的文献求助10
8秒前
如常完成签到,获得积分10
10秒前
要奋斗的小番茄完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005