Deep learning techniques for remote sensing image scene classification: A comprehensive review, current challenges, and future directions

计算机科学 人工智能 深度学习 卷积神经网络 上下文图像分类 多样性(控制论) 领域(数学) 机器学习 遥感 图像(数学) 地理 数学 纯数学
作者
Monika Kumari,Ajay Kaul
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (22) 被引量:11
标识
DOI:10.1002/cpe.7733
摘要

Summary Since last decade, deep learning has made exceptional progress in various fields of artificial intelligence including image and voice recognition, natural language processing. Inspired by these successes, researchers are now applying deep learning techniques to classification of scenes in remote sensing images. The purpose of remote sensing image scene classification is to classify remote sensing scenes according to their content. These images display a complex structure due to the variety of landforms as well as the distance between the image collection instrument and earth. In our review, we discussed 76 relevant papers published on this topic over the past 6 years. The review conducts a comparison analysis based on the overall accuracy parameter to provide insight into the effectiveness of different methods on different proportions of the dataset. The five classes of techniques we describe are convolutional neural networks, autoencoders, generative adversarial networks, vision transformers, and few‐shot learning. Future directions are discussed in this review in order to enhance the effectiveness of deep learning‐based scene classification approaches. This article concludes with an overview of the proposed method to enhance the accuracy in classifying remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐灵安发布了新的文献求助10
1秒前
1秒前
好好学习的大大莹完成签到,获得积分10
1秒前
1秒前
2秒前
研友_LX66qZ完成签到,获得积分10
2秒前
heizhu完成签到,获得积分10
2秒前
2秒前
科目三应助一米八八采纳,获得30
2秒前
lily发布了新的文献求助10
3秒前
小满关注了科研通微信公众号
3秒前
3秒前
3秒前
朴素山兰完成签到,获得积分10
3秒前
楠楠完成签到 ,获得积分10
4秒前
爆米花应助kk采纳,获得10
4秒前
汪汪完成签到,获得积分10
4秒前
4秒前
5秒前
yumu完成签到 ,获得积分10
5秒前
superxiao发布了新的文献求助10
6秒前
丘比特应助WANG采纳,获得10
6秒前
阳光的芯发布了新的文献求助10
6秒前
7秒前
syl关闭了syl文献求助
7秒前
舒服的忆南完成签到,获得积分10
7秒前
LLLLLL发布了新的文献求助20
8秒前
道以文完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
从容藏花发布了新的文献求助50
9秒前
9秒前
water发布了新的文献求助10
10秒前
小蘑菇应助hedianmoony采纳,获得10
10秒前
Mengjie完成签到,获得积分10
10秒前
wanci应助sclzl采纳,获得10
11秒前
坚强的纸飞机完成签到,获得积分10
11秒前
狂野的乌龟完成签到,获得积分10
11秒前
沉默的蓝天完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
Pragmatics as a theory of linguistics adaptation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695845
求助须知:如何正确求助?哪些是违规求助? 3247794
关于积分的说明 9855305
捐赠科研通 2959421
什么是DOI,文献DOI怎么找? 1622628
邀请新用户注册赠送积分活动 768214
科研通“疑难数据库(出版商)”最低求助积分说明 741411