Intelligent design and manufacturing of ultra-high performance concrete (UHPC) – A review

触变性 工程类 材料科学 复合材料
作者
Dingqiang Fan,Jinyun Zhu,Mengxin Fan,Jian-Xin Lu,S.H. Chu,Enlai Dong,Rui Yu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:385: 131495-131495 被引量:75
标识
DOI:10.1016/j.conbuildmat.2023.131495
摘要

The quick rise of intelligent technologies promotes the development of the construction industry into a new phase. As an advanced cement-based materials, ultra-high performance concrete (UHPC) breaks the performance upper limit of traditional concrete materials, which has also been empowered by intelligent techniques. Hence, this work comprehensively reviews the progress on the intelligent design and manufacturing of UHPC materials. The review mainly includes various design methods and performance characteristics of 3D printed UHPC (3DP-UHPC). The results reveal that currently, the particle packing methods, especially compressible packing model (CPM) and modified Andreasen and Andersen (MAA) model, are domain in designing UHPC materials. Meanwhile, the intelligent design methods, referring to optimal design by computer technology, are also increasingly used due to their high efficiency and accuracy in property predicting. Notably, recently, a new design concept was proposed by the joint use of particle packing models and machine learning techniques. On the other hand, the intelligent manufacturing of UHPC mainly refers to3DP-UHPC. Here, the rheology (especially thixotropy) and printability (pumpability, extrudability and buildability) are crucial for the manufacturing of 3DP-UHPC. Adding steel fibers can enhance the matrix strength, but also will increase the anisotropy of 3DP-UHPC by regulating fiber orientation. Overall, the intelligent development of UHPC is a significant direction for the construction industry, attracting increasing interest and attention. The outcomes of this study emphasize the advantages and significance of using intelligent techniques to design and manufacture UHPC materials, which holds great references and support for future construction projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素简发布了新的文献求助10
刚刚
刚刚
1+1发布了新的文献求助10
1秒前
123456发布了新的文献求助20
1秒前
独特元蝶完成签到,获得积分20
1秒前
1秒前
123完成签到,获得积分20
1秒前
liuwy发布了新的文献求助10
2秒前
2秒前
徐老师完成签到 ,获得积分10
3秒前
独特元蝶发布了新的文献求助10
4秒前
傅。完成签到,获得积分10
4秒前
小何发布了新的文献求助10
5秒前
龍Ryu发布了新的文献求助10
5秒前
深情安青应助祝你开心采纳,获得10
5秒前
qu完成签到 ,获得积分20
6秒前
6秒前
深情安青应助xzm采纳,获得10
6秒前
7秒前
轨迹应助Queena采纳,获得10
7秒前
7秒前
瓜6发布了新的文献求助10
7秒前
8秒前
123发布了新的文献求助30
8秒前
8秒前
8秒前
Aria完成签到,获得积分10
9秒前
9秒前
素简完成签到,获得积分10
9秒前
10秒前
多金多金发布了新的文献求助10
11秒前
11秒前
12秒前
小理事完成签到,获得积分10
12秒前
77发布了新的文献求助10
12秒前
邹咕噜发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
Lucas应助iuhgnor采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082