Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:17
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助Erin采纳,获得10
1秒前
1秒前
jingguofu发布了新的文献求助10
2秒前
3秒前
cwm发布了新的文献求助10
3秒前
哈no发布了新的文献求助10
4秒前
无极微光应助大方雁露采纳,获得20
4秒前
jin_strive完成签到,获得积分10
5秒前
6秒前
CodeCraft应助明亮的幻竹采纳,获得10
7秒前
7秒前
星辰大海应助举人烧烤采纳,获得10
7秒前
海盗船长完成签到,获得积分10
8秒前
科研通AI6应助treelet007采纳,获得10
8秒前
科研通AI6应助嘿哟采纳,获得10
8秒前
橘子完成签到,获得积分10
8秒前
曲线发布了新的文献求助10
9秒前
CodeCraft应助还不回家采纳,获得10
9秒前
lyon完成签到 ,获得积分10
9秒前
毓桦完成签到,获得积分10
10秒前
12秒前
能干储发布了新的文献求助10
12秒前
Daisy完成签到,获得积分10
12秒前
12秒前
13秒前
兴起完成签到,获得积分10
13秒前
15秒前
16秒前
刘卿婷发布了新的文献求助10
16秒前
16秒前
17秒前
YE发布了新的文献求助10
17秒前
18秒前
李健的小迷弟应助阿妤采纳,获得10
18秒前
11完成签到,获得积分10
18秒前
19秒前
zj完成签到,获得积分10
20秒前
karen发布了新的文献求助10
21秒前
骆驼翔子完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707