亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:17
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
刚刚
桐夜完成签到 ,获得积分10
刚刚
dada完成签到,获得积分10
3秒前
Soient发布了新的文献求助10
4秒前
4秒前
shinn发布了新的文献求助10
5秒前
12秒前
12秒前
舒服的觅夏完成签到,获得积分10
16秒前
17秒前
赘婿应助shinn采纳,获得10
25秒前
阿里完成签到,获得积分10
27秒前
1111关注了科研通微信公众号
29秒前
30秒前
动听的涵山完成签到,获得积分10
32秒前
思源应助郴欧尼采纳,获得10
32秒前
耕云钓月发布了新的文献求助10
34秒前
长安宁完成签到 ,获得积分10
35秒前
36秒前
41秒前
赘婿应助耕云钓月采纳,获得10
43秒前
shinn发布了新的文献求助10
44秒前
Ava应助shinn采纳,获得10
49秒前
50秒前
51秒前
1分钟前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247