模式识别(心理学)
脑电图
特征选择
人工智能
聚类分析
线性判别分析
计算机科学
判别式
静息状态功能磁共振成像
特征提取
特征(语言学)
大脑活动与冥想
心理学
神经科学
语言学
哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2023-07-01
卷期号:27 (7): 3152-3163
被引量:5
标识
DOI:10.1109/jbhi.2023.3269814
摘要
Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI