Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:17
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助lilili采纳,获得10
1秒前
1秒前
xuexi完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
zik发布了新的文献求助10
3秒前
Guangdi_xu发布了新的文献求助10
3秒前
3秒前
4秒前
顾子墨发布了新的文献求助10
4秒前
大个应助dara采纳,获得30
4秒前
my关闭了my文献求助
5秒前
肖坤发布了新的文献求助10
6秒前
小二郎应助淡然百褶裙采纳,获得10
7秒前
7秒前
炙热紫烟完成签到,获得积分10
7秒前
桃桃子发布了新的文献求助10
7秒前
大模型应助多情问儿采纳,获得10
7秒前
拾叁应助Jimmy Ko采纳,获得10
8秒前
yael发布了新的文献求助10
10秒前
drtftyv完成签到,获得积分10
10秒前
HonamC发布了新的文献求助10
10秒前
小木林发布了新的文献求助10
10秒前
完美世界应助突突突采纳,获得10
11秒前
11秒前
dreamly完成签到,获得积分10
12秒前
清新的惜天关注了科研通微信公众号
12秒前
Lucas应助zik采纳,获得10
13秒前
13秒前
jzkjzk完成签到,获得积分20
14秒前
FashionBoy应助桃桃子采纳,获得10
16秒前
16秒前
zho应助Wang采纳,获得10
17秒前
17秒前
MchemG应助枕安采纳,获得20
17秒前
17秒前
司空若剑完成签到,获得积分10
18秒前
XRWei完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487