Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:17
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小二郎应助黑沧浪亭采纳,获得10
刚刚
瓜瓜完成签到,获得积分20
刚刚
1秒前
点点完成签到 ,获得积分10
1秒前
1秒前
anya完成签到,获得积分10
1秒前
1秒前
vivre223发布了新的文献求助10
1秒前
kk君发布了新的文献求助10
1秒前
妞妞妈发布了新的文献求助10
1秒前
2秒前
2秒前
可以2发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助30
3秒前
mashirodesuki发布了新的文献求助10
3秒前
寻悦发布了新的文献求助10
3秒前
FL完成签到 ,获得积分0
3秒前
4秒前
我是犇犇发布了新的文献求助10
4秒前
bkagyin应助熊有鹏采纳,获得10
4秒前
北天极完成签到 ,获得积分10
5秒前
dbq发布了新的文献求助10
5秒前
红桃小六完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
乌拉坦发布了新的文献求助10
6秒前
鳗鱼语风发布了新的文献求助30
6秒前
情怀应助ruby采纳,获得10
6秒前
OPV完成签到,获得积分0
6秒前
6秒前
漫漫发布了新的文献求助10
7秒前
zxy发布了新的文献求助10
7秒前
我是老大应助tusizi2006采纳,获得10
7秒前
慕青应助Megan采纳,获得10
7秒前
7秒前
7秒前
8秒前
Qimier完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003