Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:17
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
渔渔完成签到 ,获得积分10
1秒前
烽火残心完成签到,获得积分10
1秒前
1秒前
顾年完成签到,获得积分10
1秒前
浅尝离白完成签到,获得积分0
2秒前
ddboys1009完成签到,获得积分10
2秒前
2秒前
YunE完成签到,获得积分10
2秒前
3秒前
慕青应助谭慧采纳,获得10
3秒前
3秒前
sky完成签到,获得积分10
3秒前
美好斓发布了新的文献求助10
3秒前
顺顺利利完成签到,获得积分10
3秒前
Dding发布了新的文献求助10
4秒前
4秒前
昏睡的妙梦完成签到,获得积分10
4秒前
笑点低向雁完成签到,获得积分10
4秒前
自愈合完成签到,获得积分10
5秒前
Ellery完成签到,获得积分10
5秒前
顾矜应助sxpab采纳,获得10
5秒前
5秒前
6秒前
无奈的小虾米完成签到,获得积分10
7秒前
7秒前
画舫发布了新的文献求助10
7秒前
7秒前
glaciersu完成签到,获得积分10
7秒前
Sparks完成签到,获得积分10
7秒前
陈佳琦发布了新的文献求助10
8秒前
wen完成签到,获得积分10
8秒前
酥酥脆完成签到,获得积分10
8秒前
JUN发布了新的文献求助10
8秒前
斯文败类应助yangyujie25采纳,获得10
8秒前
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297