Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:5
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜玫瑰应助啵清啵采纳,获得10
刚刚
彩色橘子完成签到,获得积分10
1秒前
后来完成签到,获得积分10
1秒前
2秒前
大卫在分享应助小心力学采纳,获得10
2秒前
2秒前
JHcHuN发布了新的文献求助10
4秒前
Leonie发布了新的文献求助10
5秒前
薰硝壤应助一棵草采纳,获得30
5秒前
薰硝壤应助介于两石之间采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
陈军应助科研通管家采纳,获得20
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
陈军应助科研通管家采纳,获得20
6秒前
慕青应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
寻道图强应助科研通管家采纳,获得200
7秒前
orixero应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
W_King完成签到,获得积分10
7秒前
CG2021发布了新的文献求助20
7秒前
BGRC131031发布了新的文献求助10
8秒前
烟花应助迷路冰安采纳,获得10
8秒前
wenxiang发布了新的文献求助10
9秒前
11秒前
碧蓝初丹发布了新的文献求助10
11秒前
丘比特应助慕白采纳,获得20
12秒前
ayu发布了新的文献求助10
12秒前
庸人自扰完成签到 ,获得积分10
12秒前
ShowMaker应助加菲丰丰采纳,获得30
12秒前
12秒前
tonyzhao完成签到,获得积分10
12秒前
清枫关注了科研通微信公众号
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912