Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals

模式识别(心理学) 脑电图 特征选择 人工智能 聚类分析 线性判别分析 计算机科学 判别式 静息状态功能磁共振成像 特征提取 特征(语言学) 大脑活动与冥想 心理学 神经科学 语言学 哲学
作者
Shuting Sun,Huayu Chen,Gang Luo,Chang Yan,Qunxi Dong,Xuexiao Shao,Xiaowei Li,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3152-3163 被引量:7
标识
DOI:10.1109/jbhi.2023.3269814
摘要

Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安徒发布了新的文献求助10
1秒前
1秒前
武坤完成签到,获得积分10
1秒前
任性的数据线完成签到,获得积分10
2秒前
传奇3应助xiaomaxia采纳,获得10
2秒前
DD应助江江采纳,获得10
3秒前
要减肥发布了新的文献求助10
3秒前
深空完成签到 ,获得积分10
3秒前
222发布了新的文献求助10
4秒前
慢慢完成签到 ,获得积分10
5秒前
5秒前
Ay发布了新的文献求助30
6秒前
李爱国应助叶y采纳,获得10
6秒前
9秒前
Markov完成签到,获得积分10
9秒前
YUQIONG关注了科研通微信公众号
9秒前
研友_nPkl9L完成签到,获得积分10
11秒前
orixero应助圆你心安采纳,获得10
11秒前
研友_LNo2Mn完成签到,获得积分10
11秒前
weixiaosi应助叽里呱啦采纳,获得10
13秒前
科研通AI5应助oo采纳,获得10
13秒前
爆米花应助Markov采纳,获得10
13秒前
青衣北风发布了新的文献求助10
15秒前
深情安青应助二橦采纳,获得10
16秒前
16秒前
19秒前
flasher22完成签到,获得积分10
19秒前
20秒前
科研猫猫完成签到,获得积分10
20秒前
20秒前
21秒前
成就小懒虫完成签到,获得积分10
22秒前
NN完成签到,获得积分10
23秒前
能干的吐司完成签到 ,获得积分10
23秒前
23秒前
喵喵完成签到 ,获得积分10
23秒前
顺利毕业发布了新的文献求助10
24秒前
Orange应助安徒采纳,获得10
24秒前
小蘑菇应助zhanghao采纳,获得10
24秒前
yuwen发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528