作者
Long Song,Jie Liu,Beilu Cao,Bin Liu,Xiao–Ping Zhang,Zhaoyan Chen,Chaoqun Dong,Xiangqing Liu,Zhaoheng Zhang,Wenxi Wang,Lingling Chai,Jing Liu,Jun Zhu,Cui Shu-bin,Fei He,Huiru Peng,Zhaorong Hu,Zhenqi Su,Weilong Guo,Mingming Xin,Yingyin Yao,Yong Yan,Song YinMing,Guihua Bai,Qixin Sun,Zhongfu Ni
摘要
Abstract Modern green revolution varieties of wheat ( Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b ( Rht-B1b ) and Rht-D1b alleles 1 . However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling 2–5 . Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.