GELTOR: A Graph Embedding Method based on Listwise Learning to Rank

嵌入 相似性(几何) 图嵌入 计算机科学 图形 相似性学习 理论计算机科学 秩(图论) 人工智能 机器学习 数学 模式识别(心理学) 组合数学 图像(数学)
作者
Masoud Reyhani Hamedani,Jin-Su Ryu,Sang‐Wook Kim
标识
DOI:10.1145/3543507.3583193
摘要

Similarity-based embedding methods have introduced a new perspective on graph embedding by conforming the similarity distribution of latent vectors in the embedding space to that of nodes in the graph; they show significant effectiveness over conventional embedding methods in various machine learning tasks. In this paper, we first point out the three drawbacks of existing similarity-based embedding methods: inaccurate similarity computation, conflicting optimization goal, and impairing in/out-degree distributions. Then, motivated by these drawbacks, we propose AdaSim*, a novel similarity measure for graphs that is conducive to the similarity-based graph embedding. We finally propose GELTOR, an effective embedding method that employs AdaSim* as a node similarity measure and the concept of learning-to-rank in the embedding process. Contrary to existing methods, GELTOR does not learn the similarity scores distribution; instead, for any target node, GELTOR conforms the ranks of its top-t similar nodes in the embedding space to their original ranks based on AdaSim* scores. We conduct extensive experiments with six real-world datasets to evaluate the effectiveness of GELTOR in graph reconstruction, link prediction, and node classification tasks. Our experimental results show that (1) AdaSim* outperforms AdaSim, RWR, and MCT in computing nodes similarity in graphs, (2) our GETLOR outperforms existing state-of-the-arts and conventional embedding methods in most cases of the above machine learning tasks, thereby implying that learning-to-rank is beneficial to graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助聆风采纳,获得20
刚刚
婷婷发布了新的文献求助10
刚刚
QQ发布了新的文献求助10
刚刚
沉静的红酒完成签到,获得积分10
1秒前
能干冰露完成签到,获得积分10
1秒前
2秒前
pluto应助yin采纳,获得50
2秒前
Lucas应助辉仔采纳,获得10
2秒前
4秒前
穆思柔完成签到,获得积分10
6秒前
6秒前
无奈凡波完成签到 ,获得积分10
8秒前
zjmsb完成签到,获得积分20
9秒前
泡泡啰叽发布了新的文献求助10
10秒前
哈哈哈666完成签到,获得积分10
12秒前
12秒前
13秒前
1123完成签到,获得积分10
13秒前
皇家搓澡师完成签到,获得积分10
13秒前
唐_完成签到 ,获得积分10
14秒前
aaaaaa发布了新的文献求助10
14秒前
大力的尔安完成签到,获得积分10
15秒前
12345678发布了新的文献求助10
16秒前
16秒前
16秒前
酷酷的冰真完成签到,获得积分10
16秒前
孺子牛完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
18秒前
BESTZJ完成签到,获得积分10
19秒前
19秒前
明清远完成签到,获得积分10
20秒前
lys发布了新的文献求助10
21秒前
12发布了新的文献求助10
22秒前
22秒前
22秒前
江南第八发布了新的文献求助10
22秒前
脑洞疼应助556677y采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421