Intelligent fault diagnosis of partial deep transfer based on multi-representation structural intraclass compact and double-aligned domain adaptation

计算机科学 人工智能 模式识别(心理学) 离群值 特征(语言学) 特征提取 代表(政治) 政治 政治学 法学 哲学 语言学
作者
Wanxiang Li,Zhiwu Shang,Maosheng Gao,Fei Liu,Hu Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110412-110412 被引量:4
标识
DOI:10.1016/j.ymssp.2023.110412
摘要

The main challenge of fault diagnosis models based on partial domain adaptation (PDA) is to promote positive transfer in the shared label space and avoid negative transfer caused by the mismatch between the outlier and the target label spaces. To address the above challenges and enhance the diagnosis performance in the PDA scenario, this paper proposes a partial deep transfer diagnosis model (MICDDA) based on multi-representation structure intraclass compact and double-aligned domain adaptation. First, the Gabor feature extractor and multi-representation structure network are constructed to enhance the representation ability of deep features and enrich feature information. Then, the information entropy and class diversity loss of the target domain are introduced to improve the loss of the classification network, and the source class-level weight and the target instance-level weight are used to reduce the outlier features participating in the alignment of the target features. Next, an intraclass compact constraint is proposed to enhance the agglomeration of features with the same label by minimizing the distance between the feature and the centroid. Finally, a double-aligned domain adaptation strategy is designed to enhance the alignment between the source and target domains' shared features by minimizing the inter- and intra-domain alignment. Experimental results in two case studies show that the MICDDA can effectively weaken the transfer of source outlier knowledge to the target domain, capture rich and homogeneous compact fault features in PDA diagnosis scenarios, and effectively improve diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的语蓉完成签到,获得积分10
刚刚
刚刚
律香川照之完成签到,获得积分10
3秒前
负责吃饭完成签到,获得积分10
4秒前
赘婿应助精明的沅采纳,获得10
4秒前
超级的纸鹤完成签到,获得积分10
4秒前
5秒前
7秒前
研友_656B85完成签到,获得积分10
8秒前
合适小刺猬完成签到,获得积分10
8秒前
云星天际完成签到,获得积分10
10秒前
思源应助杨yang采纳,获得10
10秒前
10秒前
月下荷花发布了新的文献求助10
12秒前
SciGPT应助周美玉采纳,获得10
13秒前
小二郎应助傻子与白痴采纳,获得10
14秒前
15秒前
爵士黄瓜发布了新的文献求助10
16秒前
18秒前
大模型应助腼腆的康采纳,获得10
19秒前
19秒前
Xie应助次元采纳,获得10
19秒前
123发布了新的文献求助20
19秒前
独特秋凌完成签到,获得积分20
19秒前
20秒前
CipherSage应助现代的迎夏采纳,获得10
21秒前
西门浩宇发布了新的文献求助10
22秒前
ZZ关注了科研通微信公众号
22秒前
酷波er应助爵士黄瓜采纳,获得10
25秒前
打打应助纯真的伟诚采纳,获得10
26秒前
26秒前
何渡星舟发布了新的文献求助10
27秒前
orixero应助吕亚采纳,获得10
28秒前
bkagyin应助杨yang采纳,获得10
29秒前
yx_cheng应助琦铉采纳,获得20
30秒前
小橙子完成签到,获得积分10
32秒前
32秒前
深情安青应助tdtk采纳,获得10
34秒前
空心菜完成签到,获得积分10
35秒前
35秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980435
求助须知:如何正确求助?哪些是违规求助? 3524350
关于积分的说明 11221150
捐赠科研通 3261779
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283