[Automatic sleep staging based on power spectral density and random forest].

随机森林 朴素贝叶斯分类器 脑电图 人工智能 模式识别(心理学) 计算机科学 交叉验证 光谱密度 决策树 分类器(UML) 试验装置 语音识别 统计 数学 支持向量机 心理学 精神科
作者
Qunxia Gao,Kai Wu
出处
期刊:PubMed 卷期号:40 (2): 280-285 被引量:5
标识
DOI:10.7507/1001-5515.202207047
摘要

The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian naïve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.采用深度学习技术实现睡眠自动分期计算复杂度较高,且需大量数据支撑。本文提出一种基于功率谱密度和随机森林的自动睡眠分期方法,先提取脑电信号6种特征波(K复合波、δ波、θ波、α波、纺锤波、β波)的功率谱密度作为特征,然后利用随机森林分类器实现5种睡眠状态(W、N1、N2、N3、REM)自动分类。采用Sleep-EDF数据库中健康受试者整晚睡眠脑电数据作为实验数据,对比了使用不同输入通道脑电信号(Fpz-Cz单通道、Pz-Oz单通道、Fpz-Cz + Pz-Oz双通道)、不同分类器(随机森林、自适应增强、梯度提升、高斯朴素贝叶斯、决策树、K近邻)、不同训练集与测试集划分方法(2折、5折、10折交叉验证及单个受试者)对分类效果的影响。实验结果表明,当采用Pz-Oz单通道脑电信号和随机森林分类器时效果最好,无论怎样变换训练集与测试集,分类准确率都达到90.79%以上,总体分类准确率、宏观平均F1值、Kappa系数最高分别可达到91.94%、73.2%、0.845,证明该方法是有效的,且不易受数据量影响,具有较好的稳定性。与已有研究相比,该方法分类准确率更高、实现更简单,适用于自动化。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何辞为完成签到,获得积分10
1秒前
1秒前
2秒前
CyrusSo524应助果实采纳,获得10
2秒前
yznfly应助果实采纳,获得30
2秒前
眼睛大雨筠应助果实采纳,获得30
2秒前
酷波er应助果实采纳,获得10
2秒前
SciGPT应助果实采纳,获得10
2秒前
LaTeXer应助果实采纳,获得150
2秒前
今后应助果实采纳,获得10
2秒前
bkagyin应助果实采纳,获得10
3秒前
尊敬的小刺猬完成签到,获得积分10
3秒前
宫冷雁发布了新的文献求助10
3秒前
钟志杰发布了新的文献求助10
4秒前
吴青完成签到,获得积分10
4秒前
YZ完成签到,获得积分10
4秒前
4秒前
范大大完成签到,获得积分10
5秒前
5秒前
可达鸭应助长青采纳,获得10
6秒前
李大侠发布了新的文献求助10
6秒前
dong应助隐形铃铛采纳,获得10
6秒前
7秒前
7秒前
yznfly应助棋士采纳,获得30
7秒前
情怀应助屠夫9441采纳,获得10
8秒前
9秒前
9秒前
大橘完成签到 ,获得积分10
9秒前
9秒前
慕青应助辰岚采纳,获得10
10秒前
Lv完成签到,获得积分10
10秒前
10秒前
BFUstbc完成签到,获得积分10
10秒前
九月完成签到,获得积分10
10秒前
桐桐应助Yuanyuan采纳,获得10
10秒前
xiaoguai完成签到 ,获得积分10
10秒前
11秒前
晓爽完成签到,获得积分10
12秒前
彩色铅笔完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124