A multi-behavior recommendation method exploring the preference differences among various behaviors

计算机科学 偏爱 嵌入 集合(抽象数据类型) 推荐系统 机器学习 数据挖掘 可视化 人工智能 偏好学习 数据集 人机交互 经济 微观经济学 程序设计语言
作者
Mingxin Gan,Gangxin Xu,Yingxue Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120316-120316 被引量:1
标识
DOI:10.1016/j.eswa.2023.120316
摘要

User behavior data has been widely used in recent research of recommendation systems. Existing work usually utilize only single behavior instead of multi-behavior. However, there are various typed of user behaviors in practical scenarios. For example, there are view, purchase, add-to-cart and add-to-favorite behaviors in a real-world e-commerce platform. For recommendation systems, using more user information is better for exploiting intrinsic user characteristics, as the single behavior records are usually too sparse to conduct preference mining. Therefore, multi-behavior based recommendation methods are increasingly emphasized by researchers. In this paper, we propose a novel framework (FPD) for utilizing multi-behavior data: generating embedding and building training losses. We compute an additional supplementary score by capturing user's preference difference among behaviors, instead of merely using initial embedding to obtain a ordinary prediction score. For better optimization model parameters, we use various behaviors to build multiple training losses. We optimize the loss function of the non-sampling strategy and set personal positive weights for each user. Experimental results on two real-world datasets demonstrates that our model outperformed the state-of-the-art methods in terms of various evaluation measurements. Furthermore, extensive ablation experiments and visualization analysis are conducted to verify the effectiveness of the proposed idea and to further explain the principle of the proposed method proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝉鸣发布了新的文献求助30
刚刚
Lottery关注了科研通微信公众号
刚刚
刚刚
zengyangyu发布了新的文献求助30
刚刚
Yy发布了新的文献求助10
刚刚
NexusExplorer应助辛苦科研人采纳,获得10
1秒前
1秒前
hq050226完成签到,获得积分10
1秒前
夏沫发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
落后的可仁完成签到,获得积分10
2秒前
乐乐应助恭喜采纳,获得10
2秒前
2秒前
susu发布了新的文献求助10
3秒前
科研通AI5应助诺一44采纳,获得10
3秒前
量子星尘发布了新的文献求助50
3秒前
FashionBoy应助科研小迷糊采纳,获得10
3秒前
半城烟火发布了新的文献求助10
3秒前
勤恳青亦发布了新的文献求助10
4秒前
畅快成协完成签到,获得积分10
4秒前
小一发布了新的文献求助10
4秒前
搜集达人应助欢欢采纳,获得10
5秒前
回复对方发布了新的文献求助10
5秒前
ming发布了新的文献求助10
6秒前
上官若男应助蝉鸣采纳,获得30
6秒前
人机发布了新的文献求助10
6秒前
赘婿应助Yy采纳,获得10
6秒前
科研通AI6应助方东采纳,获得10
7秒前
8秒前
8秒前
iNk应助22采纳,获得20
8秒前
润华发布了新的文献求助100
9秒前
项目多多完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
ZheY1完成签到,获得积分10
11秒前
张学致发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933807
求助须知:如何正确求助?哪些是违规求助? 4201872
关于积分的说明 13055364
捐赠科研通 3975957
什么是DOI,文献DOI怎么找? 2178625
邀请新用户注册赠送积分活动 1195002
关于科研通互助平台的介绍 1106406