A multi-behavior recommendation method exploring the preference differences among various behaviors

计算机科学 偏爱 嵌入 集合(抽象数据类型) 推荐系统 机器学习 数据挖掘 可视化 人工智能 偏好学习 数据集 人机交互 经济 微观经济学 程序设计语言
作者
Mingxin Gan,Gangxin Xu,Yingxue Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120316-120316 被引量:12
标识
DOI:10.1016/j.eswa.2023.120316
摘要

User behavior data has been widely used in recent research of recommendation systems. Existing work usually utilize only single behavior instead of multi-behavior. However, there are various typed of user behaviors in practical scenarios. For example, there are view, purchase, add-to-cart and add-to-favorite behaviors in a real-world e-commerce platform. For recommendation systems, using more user information is better for exploiting intrinsic user characteristics, as the single behavior records are usually too sparse to conduct preference mining. Therefore, multi-behavior based recommendation methods are increasingly emphasized by researchers. In this paper, we propose a novel framework (FPD) for utilizing multi-behavior data: generating embedding and building training losses. We compute an additional supplementary score by capturing user's preference difference among behaviors, instead of merely using initial embedding to obtain a ordinary prediction score. For better optimization model parameters, we use various behaviors to build multiple training losses. We optimize the loss function of the non-sampling strategy and set personal positive weights for each user. Experimental results on two real-world datasets demonstrates that our model outperformed the state-of-the-art methods in terms of various evaluation measurements. Furthermore, extensive ablation experiments and visualization analysis are conducted to verify the effectiveness of the proposed idea and to further explain the principle of the proposed method proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
archer01发布了新的文献求助10
刚刚
kakafly发布了新的文献求助10
刚刚
JYX完成签到 ,获得积分10
1秒前
2秒前
瓦达完成签到,获得积分20
2秒前
2秒前
晓宏发布了新的文献求助10
3秒前
3秒前
公子浅言发布了新的文献求助10
3秒前
香蕉觅云应助张思甜采纳,获得10
3秒前
4秒前
科目三应助GGbond采纳,获得10
4秒前
Serene完成签到,获得积分10
4秒前
5秒前
5秒前
阔达宝莹完成签到,获得积分10
5秒前
5秒前
Rain发布了新的文献求助10
6秒前
不回首发布了新的文献求助10
6秒前
Joy完成签到,获得积分10
7秒前
王瑶完成签到,获得积分10
7秒前
zqk02完成签到,获得积分10
7秒前
7秒前
Sally完成签到,获得积分10
7秒前
隐形曼青应助archer01采纳,获得10
8秒前
8秒前
幸福的靳完成签到,获得积分10
9秒前
Leon发布了新的文献求助10
9秒前
9秒前
smile完成签到,获得积分10
9秒前
自然绝悟发布了新的文献求助10
10秒前
希望天下0贩的0应助666采纳,获得10
10秒前
红炉点血发布了新的文献求助30
11秒前
LB发布了新的文献求助10
11秒前
科研通AI6应助晓宏采纳,获得10
12秒前
华仔应助晓宏采纳,获得10
12秒前
瓦达发布了新的文献求助10
13秒前
13秒前
13秒前
佳佳完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406537
求助须知:如何正确求助?哪些是违规求助? 4524449
关于积分的说明 14098443
捐赠科研通 4438237
什么是DOI,文献DOI怎么找? 2436057
邀请新用户注册赠送积分活动 1428197
关于科研通互助平台的介绍 1406292