已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for automatic tumor lesions delineation and prognostic assessment in multi-modality PET/CT: A prospective survey

模态(人机交互) 计算机科学 深度学习 分割 人工智能 正电子发射断层摄影术 医学物理学 放射科 机器学习 模式识别(心理学) 医学
作者
Muhammad Zubair Islam,Rizwan Ali Naqvi,Amir Haider,Hyung Seok Kim
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106276-106276 被引量:5
标识
DOI:10.1016/j.engappai.2023.106276
摘要

Tumor lesion segmentation and staging in cancer patients are one of the most challenging tasks for radiologists to recommend better treatment planning like radiation therapy, personalized medicine, and surgery. Recently, Deep Learning (DL) has emerged as an assistive technology to help radiologists to characterize the biology of tumors and manage cancer patients. Positron Emission Tomography/Computed Tomography (PET/CT) multi-modality image-based tumor segmentation has gained tremendous attraction. However, the fusion of PET and CT information exposes numerous serious challenges including intra-class variability, contrast issues, modality discrepancy (difference in shape, and size of tumor), and the blurred boundaries between tumor and normal tissues (low specificity). To address these challenges, various DL-based tumor auto-segmentation methods have been proposed to consider complementary and contradictory anatomical and functional information of multi-modality PET/CT. This survey paper provides an in-depth exploration of these auto-segmentation methods. First, we discuss PET, CT weaknesses, the need for PET/CT, and the challenge of multi-modality PET/CT images. Second, we provide a detailed discussion of the parameters used to evaluate the achievements and limitations of the reviewed methods. Third, we classify the existing solutions into three major groups based on the model architecture design such as single network, multiple networks, and hybrid network models. The multiple networks are further divided into ensembles, multi-task, and Generative Adversarial Network (GAN) models. Furthermore, we present a discussion on these solutions to improve segmentation performance along with their strengths and weaknesses. Finally, we present a discussion on open research challenges and recommend potential future directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树树完成签到,获得积分10
1秒前
木子完成签到 ,获得积分10
2秒前
多年以后完成签到 ,获得积分10
3秒前
老八完成签到,获得积分10
4秒前
吃西瓜皮完成签到,获得积分10
5秒前
6秒前
情怀应助明明采纳,获得10
7秒前
个性湘完成签到,获得积分10
7秒前
我是老大应助Aimee采纳,获得10
7秒前
orixero应助唠叨的宝马采纳,获得10
9秒前
zzz完成签到 ,获得积分10
12秒前
lx840518给lx840518的求助进行了留言
12秒前
13秒前
17秒前
英俊的铭应助哦哦哦采纳,获得10
17秒前
18秒前
jjdeng发布了新的文献求助10
20秒前
完美世界应助呼斯冷采纳,获得10
22秒前
典雅的涟妖完成签到,获得积分10
24秒前
hhh发布了新的文献求助10
26秒前
26秒前
26秒前
小curry完成签到,获得积分10
26秒前
FashionBoy应助caoyy采纳,获得10
28秒前
28秒前
小二郎应助wwwww采纳,获得10
29秒前
Spike完成签到 ,获得积分10
29秒前
醋灯笼完成签到,获得积分10
30秒前
里苏特发布了新的文献求助10
31秒前
哦哦哦发布了新的文献求助10
31秒前
科研顺利发布了新的文献求助10
31秒前
32秒前
科研通AI6.1应助TMAC采纳,获得30
32秒前
所所应助连国采纳,获得10
32秒前
科研通AI6.1应助大鱼采纳,获得10
33秒前
33秒前
33秒前
小明发布了新的文献求助10
33秒前
老八发布了新的文献求助10
34秒前
共享精神应助林一采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958