Deep learning for automatic tumor lesions delineation and prognostic assessment in multi-modality PET/CT: A prospective survey

模态(人机交互) 计算机科学 深度学习 分割 人工智能 正电子发射断层摄影术 医学物理学 放射科 机器学习 模式识别(心理学) 医学
作者
Muhammad Zubair Islam,Rizwan Ali Naqvi,Amir Haider,Hyung Seok Kim
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106276-106276 被引量:5
标识
DOI:10.1016/j.engappai.2023.106276
摘要

Tumor lesion segmentation and staging in cancer patients are one of the most challenging tasks for radiologists to recommend better treatment planning like radiation therapy, personalized medicine, and surgery. Recently, Deep Learning (DL) has emerged as an assistive technology to help radiologists to characterize the biology of tumors and manage cancer patients. Positron Emission Tomography/Computed Tomography (PET/CT) multi-modality image-based tumor segmentation has gained tremendous attraction. However, the fusion of PET and CT information exposes numerous serious challenges including intra-class variability, contrast issues, modality discrepancy (difference in shape, and size of tumor), and the blurred boundaries between tumor and normal tissues (low specificity). To address these challenges, various DL-based tumor auto-segmentation methods have been proposed to consider complementary and contradictory anatomical and functional information of multi-modality PET/CT. This survey paper provides an in-depth exploration of these auto-segmentation methods. First, we discuss PET, CT weaknesses, the need for PET/CT, and the challenge of multi-modality PET/CT images. Second, we provide a detailed discussion of the parameters used to evaluate the achievements and limitations of the reviewed methods. Third, we classify the existing solutions into three major groups based on the model architecture design such as single network, multiple networks, and hybrid network models. The multiple networks are further divided into ensembles, multi-task, and Generative Adversarial Network (GAN) models. Furthermore, we present a discussion on these solutions to improve segmentation performance along with their strengths and weaknesses. Finally, we present a discussion on open research challenges and recommend potential future directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助中华田园博采纳,获得10
刚刚
英俊的小蝴蝶完成签到,获得积分10
1秒前
Diss完成签到,获得积分10
2秒前
单采白完成签到,获得积分10
2秒前
林希希发布了新的文献求助10
3秒前
Ylyyyyyy发布了新的文献求助10
3秒前
3秒前
善学以致用应助宝铭YUAN采纳,获得10
5秒前
丘比特应助llg采纳,获得10
6秒前
果冻完成签到,获得积分10
6秒前
小二郎应助liherong采纳,获得10
7秒前
7秒前
8秒前
蓝胖子想要两颗西柚-完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
一战成硕发布了新的文献求助10
9秒前
配言完成签到,获得积分10
10秒前
珊珊来迟完成签到,获得积分10
11秒前
leaves发布了新的文献求助10
12秒前
13秒前
楠枫发布了新的文献求助10
13秒前
paopao完成签到,获得积分10
13秒前
吕大本事发布了新的文献求助10
13秒前
CL完成签到,获得积分10
13秒前
Orange应助我想毕业采纳,获得10
13秒前
星辰大海应助fsx524402采纳,获得30
14秒前
16秒前
17秒前
17秒前
17秒前
18秒前
20秒前
600发布了新的文献求助10
20秒前
21秒前
21秒前
林希希发布了新的文献求助10
22秒前
22秒前
JamesPei应助流星噬月采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718