Deep learning for automatic tumor lesions delineation and prognostic assessment in multi-modality PET/CT: A prospective survey

模态(人机交互) 计算机科学 深度学习 分割 人工智能 正电子发射断层摄影术 医学物理学 放射科 机器学习 模式识别(心理学) 医学
作者
Muhammad Zubair Islam,Rizwan Ali Naqvi,Amir Haider,Hyung Seok Kim
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106276-106276 被引量:5
标识
DOI:10.1016/j.engappai.2023.106276
摘要

Tumor lesion segmentation and staging in cancer patients are one of the most challenging tasks for radiologists to recommend better treatment planning like radiation therapy, personalized medicine, and surgery. Recently, Deep Learning (DL) has emerged as an assistive technology to help radiologists to characterize the biology of tumors and manage cancer patients. Positron Emission Tomography/Computed Tomography (PET/CT) multi-modality image-based tumor segmentation has gained tremendous attraction. However, the fusion of PET and CT information exposes numerous serious challenges including intra-class variability, contrast issues, modality discrepancy (difference in shape, and size of tumor), and the blurred boundaries between tumor and normal tissues (low specificity). To address these challenges, various DL-based tumor auto-segmentation methods have been proposed to consider complementary and contradictory anatomical and functional information of multi-modality PET/CT. This survey paper provides an in-depth exploration of these auto-segmentation methods. First, we discuss PET, CT weaknesses, the need for PET/CT, and the challenge of multi-modality PET/CT images. Second, we provide a detailed discussion of the parameters used to evaluate the achievements and limitations of the reviewed methods. Third, we classify the existing solutions into three major groups based on the model architecture design such as single network, multiple networks, and hybrid network models. The multiple networks are further divided into ensembles, multi-task, and Generative Adversarial Network (GAN) models. Furthermore, we present a discussion on these solutions to improve segmentation performance along with their strengths and weaknesses. Finally, we present a discussion on open research challenges and recommend potential future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
OMG完成签到 ,获得积分20
1秒前
1秒前
科研通AI2S应助放克俊逸采纳,获得10
1秒前
虚拟的泥猴桃应助领衔采纳,获得10
2秒前
超帅凡阳发布了新的文献求助10
2秒前
科研螺丝发布了新的文献求助10
6秒前
飞云发布了新的文献求助20
6秒前
hjaxii完成签到,获得积分10
6秒前
小马甲应助feiCheung采纳,获得10
7秒前
7秒前
7秒前
9秒前
晓晓来了发布了新的文献求助10
10秒前
10秒前
10秒前
领衔完成签到,获得积分20
10秒前
丘比特应助天才Kitty猫采纳,获得10
11秒前
11秒前
12秒前
乐乐应助草莓尖尖采纳,获得10
12秒前
12秒前
1223发布了新的文献求助10
12秒前
CrozzMoy发布了新的文献求助10
13秒前
zmx发布了新的文献求助10
14秒前
buno应助张zhang采纳,获得10
15秒前
体贴的梦露完成签到,获得积分10
15秒前
阿包发布了新的文献求助10
15秒前
上官若男应助杪123采纳,获得10
16秒前
16秒前
16秒前
L77发布了新的文献求助10
17秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608