Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries

阴极 硫化物 电解质 材料科学 电导率 电极 导电体 阳极 碳纳米管 离子电导率 化学工程 复合材料 冶金 化学 工程类 物理化学
作者
Huaqing Shen,Shenghao Jing,Siliang Liu,Yuting Huang,Fangbo He,Yang Liu,Zhi Zhuang,Zongliang Zhang,Fangyang Liu
出处
期刊:Advanced powder materials [Elsevier]
卷期号:2 (4): 100136-100136 被引量:17
标识
DOI:10.1016/j.apmate.2023.100136
摘要

Sulfide-based all-solid-state batteries (ASSBs) exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes (SSEs). Carbon-based conductive agents (CAs) are often used in the construction of electronic conductive networks to achieve rapid electron transfer. However, CAs accelerate the formation of decomposition products of SSEs, and their effects on sulfide-based ASSBs are not fully understood. Herein, the effect of CAs (super P, vaper-grown carbon fibers, and carbon nanotubes) on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading (8 and 25 ​mg·cm−2). The results show that under low mass loading, the side reaction between the CAs and the SSEs deteriorates the performance of the cell, while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading. Furthermore, the gradient design strategy (enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side) is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs. The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity. Consequently, the optimized electrode achieves a high areal capacity of 5.6 ​mAh·cm−2 at high current density (1.25 ​mA·cm−2, 0.2 ​C) at 25 °C with a capacity retention of 87.85% after 100 cycles. This work provides a promising way for the design of high-mass loading electrodes with practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化学狗发布了新的文献求助10
刚刚
刚刚
浩浩完成签到,获得积分10
1秒前
胡图图完成签到,获得积分10
1秒前
包容的剑发布了新的文献求助10
2秒前
3秒前
小马甲应助细腻沅采纳,获得10
3秒前
4秒前
招财不肥完成签到,获得积分10
4秒前
4秒前
77完成签到,获得积分10
5秒前
NexusExplorer应助顾阿秀采纳,获得10
5秒前
5秒前
科研通AI5应助二二二采纳,获得10
6秒前
terrell完成签到,获得积分10
6秒前
David完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助Denmark采纳,获得10
7秒前
7秒前
望望旺仔牛奶完成签到,获得积分10
7秒前
香蕉觅云应助luoshi采纳,获得10
8秒前
Zn应助gnr2000采纳,获得10
8秒前
二小完成签到,获得积分20
8秒前
拼搏思卉完成签到,获得积分10
8秒前
内向音响发布了新的文献求助10
8秒前
上官若男应助曼尼采纳,获得10
9秒前
飞羽发布了新的文献求助10
9秒前
科研通AI2S应助song99采纳,获得10
9秒前
momi完成签到 ,获得积分10
9秒前
哈哈哈呢完成签到 ,获得积分20
9秒前
LiShin发布了新的文献求助10
9秒前
phylicia发布了新的文献求助10
10秒前
萝卜完成签到,获得积分10
10秒前
10秒前
sjj完成签到,获得积分10
11秒前
只道寻常发布了新的文献求助10
11秒前
灵巧坤完成签到,获得积分20
12秒前
澹台灭明完成签到,获得积分10
12秒前
含蓄的鹤发布了新的文献求助10
12秒前
K. G.完成签到,获得积分0
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762