内质网
粒体自噬
未折叠蛋白反应
细胞生物学
氧化应激
细胞内
线粒体
化学
自噬
生物
细胞凋亡
生物化学
作者
Lei Qiao,Shuqi Yan,Xina Dou,Xiaofan Song,Jiajing Chang,Shanyao Pi,Xinyi Zhang,Chunlan Xu
摘要
The intestinal barrier plays a fundamental role in body health. Intracellular redox imbalance can trigger endoplasmic reticulum stress (ERS) and mitophagy, leading to intestinal barrier damage. Our previous studies demonstrated that mitophagy is closely associated with the protective effects of biogenic selenium nanoparticles (SeNPs) on intestinal epithelial barrier function. Thus, we hypothesize that ERS and mitophagy are likely involved in the regulatory effects of SeNPs on oxidative stress-induced intestinal epithelial barrier dysfunction. The results showed that oxidative stress or ERS caused the increase of intestinal epithelial permeability. SeNPs effectively alleviated hydrogen peroxide (H2O2-)-induced structural damage of endoplasmic reticulum (ER) and mitochondria of porcine jejunal epithelial cells (IPEC-J2). SeNPs significantly decreased intracellular inositol triphosphate (IP3) and Ca2+ concentration, down-regulated inositol trisphosphate receptor (IP3R) expression level, and up-regulated ER-resident selenoproteins mRNA levels in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment significantly decreased the intracellular Ca2+, IP3, IP3R, and reactive oxygen species (ROS) levels; protected the structure and function of ER and mitochondria; and effectively alleviated the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to tunicamycin (TM). Moreover, SeNPs significantly inhibited the colocalization of mitochondria and lysosomes. Furthermore, compared with TM model group, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4 and AMPK/mTOR/PINK1 signaling pathway. The PERK agonist (CCT020312) and the AMPK agonist (AICAR) could reverse the protective effects of SeNPs on IPEC-J2 cells. The PERK inhibitor (GSK2656157) and the AMPK inhibitor (compound C) had a similar effect on IPEC-J2 cells as that of SeNPs. In summary, the protective effects of SeNPs on intestinal barrier dysfunction are closely associated with ERS-related PERK and mitophagy-related AMPK signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI