An end-to-end framework for information extraction from Italian resumes

计算机科学 命名实体识别 信息抽取 市场细分 分割 人工智能 情报检索 端到端原则 最终用户 数据科学 自然语言处理 机器学习 数据挖掘 万维网 管理 任务(项目管理) 营销 经济 业务
作者
Alessandro Barducci,Simone Iannaccone,Valerio La Gatta,Vincenzo Moscato,Giancarlo Sperlì,Sergio Zavota
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118487-118487 被引量:19
标识
DOI:10.1016/j.eswa.2022.118487
摘要

Nowadays, recruitment processes are increasingly being automated by intelligent systems which provide best candidates for companies' open positions, and vice versa. However, extracting information from the unstructured documents involved in these processes (e.g. resumes, jobs' descriptions) still represents an open challenge because of their high heterogeneity (in the form and style) and the lack of pre-defined standards between different companies and/or countries. In this paper, we address the resume information extraction problem, focusing on documents within the Italian Labor Market. Specifically, we propose an effective and efficient end-to-end framework capable of providing a complete candidate overview including his personal information, skills and work experiences. Specifically, after having extracted the raw data from the resume documents, the system segments them into semantically consistent parts using linguistics patterns. Each segment is further processed with a NER algorithm, based on pre-trained language models, to extract relevant information which an HR specialist could consult in order to assess the suitability of a candidate for a job offer. We collected (and labeled) a new Italian resume dataset and our results prove the effectiveness of the proposed method, especially considering the great advantages our segmentation strategy brings to the NER performance with respect to standard line-based segmentation approaches. In addition, our system achieves promising performance when combined with modern NLP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助zx采纳,获得10
刚刚
1秒前
和谐初南发布了新的文献求助10
3秒前
3秒前
Owen发布了新的文献求助10
5秒前
三三完成签到 ,获得积分10
6秒前
道友请留步完成签到 ,获得积分10
6秒前
8秒前
鱼跃发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
14秒前
15秒前
全栾发布了新的文献求助10
17秒前
ChouNen完成签到,获得积分10
18秒前
paidahai完成签到,获得积分10
21秒前
圆圈儿应助全栾采纳,获得20
22秒前
慕青应助Talha采纳,获得10
22秒前
NexusExplorer应助Talha采纳,获得10
22秒前
易如反掌应助Talha采纳,获得10
22秒前
刘莅完成签到 ,获得积分10
22秒前
烟花应助Owen采纳,获得10
28秒前
liuzr应助Missyang采纳,获得10
31秒前
萧水白应助大开口采纳,获得10
34秒前
35秒前
小叶子完成签到 ,获得积分10
35秒前
贤惠的迎夏关注了科研通微信公众号
37秒前
37秒前
手机用户123456789_完成签到,获得积分10
38秒前
QiJiLuLu完成签到,获得积分10
38秒前
ff发布了新的文献求助10
38秒前
搞什么搞完成签到,获得积分10
38秒前
39秒前
evelynjm发布了新的文献求助20
40秒前
杳鸢给小龙的求助进行了留言
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
隐形曼青应助科研通管家采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267763
求助须知:如何正确求助?哪些是违规求助? 2907156
关于积分的说明 8340797
捐赠科研通 2577881
什么是DOI,文献DOI怎么找? 1401254
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634023