An end-to-end framework for information extraction from Italian resumes

计算机科学 命名实体识别 信息抽取 市场细分 分割 人工智能 情报检索 端到端原则 最终用户 数据科学 自然语言处理 机器学习 数据挖掘 万维网 管理 任务(项目管理) 营销 经济 业务
作者
Alessandro Barducci,Simone Iannaccone,Valerio La Gatta,Vincenzo Moscato,Giancarlo Sperlì,Sergio Zavota
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118487-118487 被引量:19
标识
DOI:10.1016/j.eswa.2022.118487
摘要

Nowadays, recruitment processes are increasingly being automated by intelligent systems which provide best candidates for companies' open positions, and vice versa. However, extracting information from the unstructured documents involved in these processes (e.g. resumes, jobs' descriptions) still represents an open challenge because of their high heterogeneity (in the form and style) and the lack of pre-defined standards between different companies and/or countries. In this paper, we address the resume information extraction problem, focusing on documents within the Italian Labor Market. Specifically, we propose an effective and efficient end-to-end framework capable of providing a complete candidate overview including his personal information, skills and work experiences. Specifically, after having extracted the raw data from the resume documents, the system segments them into semantically consistent parts using linguistics patterns. Each segment is further processed with a NER algorithm, based on pre-trained language models, to extract relevant information which an HR specialist could consult in order to assess the suitability of a candidate for a job offer. We collected (and labeled) a new Italian resume dataset and our results prove the effectiveness of the proposed method, especially considering the great advantages our segmentation strategy brings to the NER performance with respect to standard line-based segmentation approaches. In addition, our system achieves promising performance when combined with modern NLP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiao发布了新的文献求助10
2秒前
Akim应助Ma_Fangru采纳,获得30
3秒前
4秒前
十月的天空完成签到,获得积分10
5秒前
6秒前
星星轨迹发布了新的文献求助10
8秒前
9秒前
钦林发布了新的文献求助10
12秒前
12秒前
13秒前
heheheli发布了新的文献求助10
13秒前
14秒前
在水一方应助车灵波采纳,获得10
14秒前
15秒前
FashionBoy应助xiaoxiaoz采纳,获得10
16秒前
舒适访风发布了新的文献求助10
16秒前
hmgdktf发布了新的文献求助10
17秒前
大木头发布了新的文献求助10
17秒前
18秒前
wj完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
21秒前
赵凌完成签到,获得积分10
23秒前
Shahid完成签到,获得积分20
23秒前
张 大头发布了新的文献求助10
24秒前
哩哩发布了新的文献求助10
24秒前
九木德完成签到 ,获得积分10
24秒前
脑洞疼应助XUAN采纳,获得10
24秒前
Mercury发布了新的文献求助10
26秒前
赵凌发布了新的文献求助10
26秒前
27秒前
孙意冉完成签到,获得积分10
29秒前
PATTOM发布了新的文献求助10
32秒前
32秒前
xixifu发布了新的文献求助10
32秒前
32秒前
Akim应助哩哩采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238