Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China

生物能源 可再生能源 发电 功率(物理) 计算机科学 工程类 环境科学 电气工程 量子力学 物理
作者
Kai Zhang,Kedong Yin,Wendong Yang
出处
期刊:Renewable Energy [Elsevier]
卷期号:198: 695-711 被引量:17
标识
DOI:10.1016/j.renene.2022.08.050
摘要

Accurate short-term prediction of bioenergy power generation structure can optimize the bioenergy structure and help achieve carbon neutrality. However, there are currently few related studies, and most of them present long-term predictions on the development potential of bioenergy, which cannot meet the modeling requirements of predicting structure. Hence, the Fractional-order-accumulation grey Compositional data Model with Particle swarm is proposed in this paper (PFCM (1,1)) for forecasting bioenergy power generation structure. The proposed model satisfies the modeling requirements by introducing the fractional accumulation operator to ensure the prediction accuracy, and constructing the spherical mapping space to reduce the data dimension. The empirical studies prove that the newly developed model performs better than other models, which is successfully employed to predict bioenergy power generation structure of China for 2020–2024. The results show that the share of renewable municipal waste in bioenergy power generation will exceed that of solid biofuels by 2023 and the share of biogas power generation has not changed much. Furthermore, although the total amount of bioenergy power generation in China is growing rapidly, unbalanced development and small share of power are two important challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助范fan采纳,获得30
刚刚
挽月白完成签到,获得积分10
刚刚
1秒前
嘿嘿发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
hony完成签到,获得积分10
7秒前
斯文败类应助郭子仪采纳,获得30
7秒前
8秒前
Thien应助lyp采纳,获得10
8秒前
8秒前
yyanxuemin919发布了新的文献求助10
9秒前
研友_Lmb15n发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
上帝粒子应助Liu采纳,获得50
12秒前
李伟峰完成签到,获得积分10
12秒前
13秒前
wy发布了新的文献求助10
13秒前
冷酷莫言发布了新的文献求助10
14秒前
qwer发布了新的文献求助10
14秒前
15秒前
嘿嘿发布了新的文献求助10
15秒前
jiabu完成签到 ,获得积分10
16秒前
学术费物发布了新的文献求助10
16秒前
16秒前
律香川照之完成签到,获得积分10
18秒前
看100篇文献完成签到,获得积分10
19秒前
sylus发布了新的文献求助10
20秒前
太兰完成签到 ,获得积分10
21秒前
wang完成签到,获得积分20
21秒前
22秒前
spc68应助chen采纳,获得10
22秒前
英姑应助暗中讨饭采纳,获得10
25秒前
只争朝夕应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432