化学
光化学
荧光
硝基
电泳剂
组合化学
草酰氯
硝化作用
药物化学
催化作用
有机化学
烷基
物理
量子力学
作者
Patrik Osuský,Maroš Smolíček,Jela Nociarová,Erik Rakovský,Peter Hrobárik
标识
DOI:10.1021/acs.joc.2c00732
摘要
One-pot reductive N,N-dimethylation of suitable nitro- and amino-substituted (hetero)arenes can be achieved using a DMSO/HCOOH/Et3N system acting as a low-cost but efficient reducing and methylating agent. The transformation of heteroaryl-amines can be accelerated by using dimethyl sulfoxide/oxalyl chloride or chloromethyl methyl sulfide as the source of active CH3SCH2+ species, while the exclusion of HCOOH in the initial stage of the reaction allows avoiding N-formamides as resting intermediates. The developed procedures are applicable in multigram-scale synthesis, and because of the lower electrophilicity of CH3SCH2+, they also work in pathological cases, where common methylating agents provide N,N-dimethylated products in no yield or inferior yields due to concomitant side reactions. The method is particularly useful in one-pot reductive transformation of 2-H-nitrobenzazoles to corresponding N,N-dimethylamino-substituted heteroarenes. These, upon Cu(II)-catalyzed oxidative homocoupling, afford 2,2'-bibenzazoles substituted with dimethylamino groups as charge-transfer N^N ligands with intensive absorption/emission in the visible region. The fluorescence of NMe2-functionalized bibenzothiazoles remains intensive even upon complexation with ZnCl2, while emission maxima are bathochromically shifted from the green/yellow to orange/red spectral region, making these small-molecule fluorophores, exhibiting large emission quantum yields and Stokes shifts, an attractive platform for the construction of various functional dyes and light-harvesting materials with tunable emission color upon complexation.
科研通智能强力驱动
Strongly Powered by AbleSci AI