Discrimination of different oil types and adulterated safflower seed oil based on electronic nose combined with gas chromatography-ion mobility spectrometry

电子鼻 化学 气相色谱-质谱法 葵花籽油 食用油 食品科学 色谱法 主成分分析 离子迁移光谱法 气相色谱法 线性判别分析 质谱法 数学 人工智能 计算机科学 统计
作者
Lu Han,Min Chen,Yiting Li,Shasha Wu,Li Zhang,Kang Tu,Leiqing Pan,Jie Wu,Lijun Song
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:114: 104804-104804 被引量:37
标识
DOI:10.1016/j.jfca.2022.104804
摘要

Due to its high food value, safflower seed oil (SSO) is easily adulterated by using other edible oils, which poses a serious threat to human health and determines economic losses. In the present study, electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS) were applied in the analysis of SSO adulterated with various proportions of three edible oils (sunflower oil, soybean oil, corn oil). E-nose data was shown to be effective in clustering different edible oils and distinguishing between pure and adulterated oils using linear discriminant analysis (LDA), albeit with poor performance in quantitative analysis of adulteration rates by partial least squares (PLS). GC-IMS analysis was also performed to determine the volatile fingerprinting of the five edible oils and the adulterated oils. Principal component analysis (PCA) enabled distinction between the five edible oils and clustering of samples with different adulteration rates. Moreover, the PLS model based on GC-IMS data led to adequate differentiation of adulteration rates in SSO. This study is the first comprehensive report on SSO adulteration detection employing GC-IMS and E-nose methods, and provides a basis for assessing the quality of SSO available on the market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rollei应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
Rollei应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Rollei应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Rollei应助科研通管家采纳,获得10
1秒前
幻翎应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
危机的阁应助科研通管家采纳,获得50
1秒前
幻翎应助科研通管家采纳,获得30
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
危机的阁应助科研通管家采纳,获得50
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
ding应助科研通管家采纳,获得10
2秒前
eblog发布了新的文献求助10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735163
求助须知:如何正确求助?哪些是违规求助? 5358806
关于积分的说明 15328740
捐赠科研通 4879501
什么是DOI,文献DOI怎么找? 2621999
邀请新用户注册赠送积分活动 1571173
关于科研通互助平台的介绍 1527966