Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

医学 肾病 活检 接收机工作特性 试验预测值 金标准(测试) 放射科 人工智能 内科学 计算机科学 内分泌学 糖尿病
作者
Francesca Testa,Francesco Fontana,Federico Pollastri,Johanna Chester,Marco Leonelli,Francesco Giaroni,F. Gualtieri,Federico Bolelli,Elena Mancini,Maurizio Nordio,Paolo Sacco,Giulia Ligabue,Silvia Giovanella,Maria Ferri,Gaetano Alfano,Loreto Gesualdo,Simonetta Cimino,Gabriele Donati,Costantino Grana,Riccardo Magistroni
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:17 (9): 1316-1324 被引量:8
标识
DOI:10.2215/cjn.01760222
摘要

Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features.Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid-Schiff-stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores.We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, P<0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included (1) inflammation within areas of interstitial fibrosis and tubular atrophy and (2) hyaline casts.The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
贾珂盈发布了新的文献求助10
1秒前
pysa完成签到,获得积分10
2秒前
XHT发布了新的文献求助10
2秒前
传奇3应助平硕采纳,获得10
2秒前
Ftplanet发布了新的文献求助10
3秒前
nn123完成签到 ,获得积分10
3秒前
3秒前
塔可拉完成签到,获得积分10
3秒前
4秒前
4秒前
等待的毛衣完成签到 ,获得积分10
4秒前
4秒前
luyang完成签到,获得积分10
4秒前
天天快乐应助碧蓝尔槐采纳,获得10
4秒前
孤独雪柳完成签到,获得积分20
4秒前
93发布了新的文献求助10
5秒前
5秒前
Pengpeng完成签到,获得积分10
5秒前
5秒前
Lizicai关注了科研通微信公众号
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
kister应助luyang采纳,获得20
7秒前
ggg完成签到,获得积分20
7秒前
小新应助WestHoter采纳,获得10
8秒前
8秒前
顾矜应助Ftplanet采纳,获得10
9秒前
9秒前
玛卡巴卡发布了新的文献求助10
9秒前
dlgd完成签到,获得积分10
9秒前
Kimhy发布了新的文献求助10
10秒前
10秒前
wjx发布了新的文献求助20
10秒前
多宝完成签到,获得积分10
10秒前
10秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579