Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

医学 肾病 活检 接收机工作特性 试验预测值 金标准(测试) 放射科 人工智能 内科学 计算机科学 内分泌学 糖尿病
作者
Francesca Testa,Francesco Fontana,Federico Pollastri,Johanna Chester,Marco Leonelli,Francesco Giaroni,F. Gualtieri,Federico Bolelli,Elena Mancini,Maurizio Nordio,Paolo Sacco,Giulia Ligabue,Silvia Giovanella,Maria Ferri,Gaetano Alfano,Loreto Gesualdo,Simonetta Cimino,Gabriele Donati,Costantino Grana,Riccardo Magistroni
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:17 (9): 1316-1324 被引量:6
标识
DOI:10.2215/cjn.01760222
摘要

Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features.Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid-Schiff-stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores.We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, P<0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included (1) inflammation within areas of interstitial fibrosis and tubular atrophy and (2) hyaline casts.The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sdl发布了新的文献求助10
2秒前
gesg发布了新的文献求助10
2秒前
2秒前
昏睡的蟠桃应助小楼采纳,获得200
3秒前
清爽乐菱应助skycrygg采纳,获得20
3秒前
3秒前
wang发布了新的文献求助10
3秒前
5秒前
雪花精灵完成签到,获得积分10
5秒前
木又权发布了新的文献求助10
6秒前
6秒前
隐形曼青应助高兴的海亦采纳,获得10
6秒前
nine2652发布了新的文献求助10
6秒前
彭于彦祖应助高兴的海亦采纳,获得30
6秒前
廖晨曦发布了新的文献求助10
6秒前
卡卡西应助高兴的海亦采纳,获得30
7秒前
7秒前
Hello应助高兴的海亦采纳,获得30
7秒前
7秒前
彭于彦祖应助高兴的海亦采纳,获得30
7秒前
小二郎应助高兴的海亦采纳,获得10
7秒前
7秒前
小二郎应助gaoyi12356采纳,获得10
7秒前
娃哈哈完成签到,获得积分10
8秒前
库库林白夜关注了科研通微信公众号
8秒前
蓝色斑马完成签到,获得积分10
9秒前
网名还没想好完成签到,获得积分10
9秒前
9秒前
肥鹏发布了新的文献求助10
10秒前
qq大魔王发布了新的文献求助10
11秒前
Keira发布了新的文献求助20
12秒前
重要从灵完成签到,获得积分10
12秒前
13秒前
知昂张完成签到,获得积分20
13秒前
111驳回了Lucas应助
14秒前
Yynnn完成签到 ,获得积分10
14秒前
疯狂的师发布了新的文献求助10
14秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987