亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational Approaches for Investigating Disease-causing Mutations in Membrane Proteins: Database Development, Analysis and Prediction

膜蛋白 计算生物学 突变 生物 蛋白质组 脂质双层 生物信息学 遗传学 基因
作者
A. Kulandaisamy,Fathima Ridha,Dmitrij Frishman,M. Michael Gromiha
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:22 (21): 1766-1775 被引量:3
标识
DOI:10.2174/1568026622666220726124705
摘要

Membrane proteins (MPs) play an essential role in a broad range of cellular functions, serving as transporters, enzymes, receptors, and communicators, and about ~60% of membrane proteins are primarily used as drug targets. These proteins adopt either α-helical or β-barrel structures in the lipid bilayer of a cell/organelle membrane. Mutations in membrane proteins alter their structure and function, and may lead to diseases. Data on disease-causing and neutral mutations in membrane proteins are available in MutHTP and TMSNP databases, which provide additional features based on sequence, structure, topology, and diseases. These databases have been effectively utilized for analysing sequence and structure-based features in disease-causing and neutral mutations in membrane proteins, exploring disease-causing mechanisms, elucidating the relationship between sequence/structural parameters and diseases, and developing computational tools. Further, machine learning-based tools have been developed for identifying disease-causing mutations using diverse features, such as evolutionary information, physicochemical properties, atomic contacts, contact potentials, and the contribution of different energetic terms. These membrane protein-specific tools are helpful in characterizing the effect of new variants in the whole human membrane proteome. In this review, we provide a discussion of the available databases for disease-causing mutations in membrane proteins, followed by a statistical analysis of membrane protein mutations using sequence and structural features. In addition, available prediction tools for identifying disease-causing and neutral mutations in membrane proteins will be described with their performances. This comprehensive review provides deep insights into designing mutation-specific strategies for different diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭团不吃鱼完成签到,获得积分10
53秒前
科研通AI2S应助小马采纳,获得30
1分钟前
Flex发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Cherry发布了新的文献求助10
2分钟前
pysa给pysa的求助进行了留言
2分钟前
joanna完成签到,获得积分10
2分钟前
呆萌盼柳完成签到,获得积分10
2分钟前
呆萌盼柳发布了新的文献求助10
2分钟前
krathhong完成签到 ,获得积分10
3分钟前
充电宝应助YIN采纳,获得10
3分钟前
3分钟前
YIN发布了新的文献求助10
3分钟前
3分钟前
星流xx完成签到 ,获得积分10
3分钟前
songjing完成签到,获得积分10
4分钟前
4分钟前
正同学发布了新的文献求助30
4分钟前
正同学应助hikevin126采纳,获得50
5分钟前
5分钟前
songjing发布了新的文献求助10
5分钟前
5分钟前
7分钟前
pysa发布了新的文献求助10
8分钟前
pysa完成签到,获得积分10
8分钟前
神勇丹烟发布了新的文献求助30
9分钟前
汤汤完成签到 ,获得积分10
9分钟前
脑洞疼应助科研通管家采纳,获得10
10分钟前
Ava应助勤恳怡采纳,获得10
11分钟前
11分钟前
勤恳怡发布了新的文献求助10
11分钟前
可爱的函函应助勤恳怡采纳,获得10
12分钟前
打打应助科研通管家采纳,获得10
12分钟前
深情安青应助lingzhiyi采纳,获得10
12分钟前
在水一方应助禤禤采纳,获得10
12分钟前
Windy完成签到,获得积分10
12分钟前
12分钟前
禤禤发布了新的文献求助10
12分钟前
科研通AI2S应助ykswz99采纳,获得10
13分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207751
求助须知:如何正确求助?哪些是违规求助? 2857006
关于积分的说明 8108364
捐赠科研通 2522603
什么是DOI,文献DOI怎么找? 1355902
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613670