避障
计算机科学
强化学习
避碰
机器人
障碍物
人工智能
蒙特卡罗树搜索
移动机器人
编码(集合论)
过程(计算)
树(集合论)
蒙特卡罗方法
计算机安全
操作系统
数学分析
程序设计语言
统计
数学
集合(抽象数据类型)
政治学
法学
碰撞
作者
Sahar Leisiazar,Edward J. Park,Angelica Lim,Mo Chen
标识
DOI:10.1109/iros55552.2023.10342150
摘要
We propose a novel methodology for robotic follow-ahead applications that address the critical challenge of obstacle and occlusion avoidance. Our approach effectively navigates the robot while ensuring avoidance of collisions and occlusions caused by surrounding objects. To achieve this, we developed a high-level decision-making algorithm that generates short-term navigational goals for the mobile robot. Monte Carlo Tree Search is integrated with a Deep Reinforcement Learning method to enhance the performance of the decision-making process and generate more reliable navigational goals. Through extensive experimentation and analysis, we demonstrate the effectiveness and superiority of our proposed approach in comparison to the existing follow-ahead human-following robotic methods. Our code is available at https://github.com/saharLeisiazar/follow-ahead-ros.
科研通智能强力驱动
Strongly Powered by AbleSci AI