亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global Map Assisted Multi-Agent Collision Avoidance via Deep Reinforcement Learning around Complex Obstacles

避碰 强化学习 障碍物 避障 计算机科学 碰撞 国家(计算机科学) 人工智能 代表(政治) 自主代理人 动作(物理) 多样性(控制论) 弹道 分布式计算 算法 机器人 移动机器人 计算机安全 物理 天文 政治 政治学 法学 量子力学
作者
Yuanyuan Du,Jianan Zhang,Jie Xu,Xiang Cheng,Shuguang Cui
标识
DOI:10.1109/iros55552.2023.10341762
摘要

State-of-the-art multi-agent collision avoidance algorithms face limitations when applied to cluttered public environments, where obstacles may have a variety of shapes and structures. The issue arises because most of these algorithms are agent-level methods. They concentrate solely on preventing collisions between the agents while the obstacles are handled merely out-of-policy. Obstacle-aware policies output an action considering both agents and obstacles. Current obstacle-aware algorithms, mainly based on Lidar sensor data, struggle to handle collision avoidance around complex obstacles. To resolve this issue, this paper investigates how to find a better way to travel around diverse obstacles. In particular, we present a global map assisted collision avoidance algorithm which, following the lead of a high-level goal guide and using an obstacle representation called distance map, considers other agents and obstacles simultaneously. Moreover, our model can be loaded into each agent individually, making it applicable to large maps or more agents. Simulation results indicate that our model outperforms the state-of-the-art algorithms, showing in scenarios with complex obstacles. We present a notion for incorporating global information in decentralized decision-making, along with a method for extending agent-level algorithms to cluttered environments in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Jasper应助丽优采纳,获得10
7秒前
j7完成签到 ,获得积分10
13秒前
32秒前
丽优发布了新的文献求助10
37秒前
1分钟前
十一发布了新的文献求助10
1分钟前
ataybabdallah完成签到,获得积分10
2分钟前
十一完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
星辰大海应助丽优采纳,获得10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
2分钟前
丽优发布了新的文献求助10
2分钟前
葵花籽发布了新的文献求助10
3分钟前
领导范儿应助doudou采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
斯文败类应助doudou采纳,获得10
4分钟前
宋芽芽完成签到,获得积分10
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
葵花籽完成签到,获得积分10
4分钟前
最落幕完成签到 ,获得积分10
5分钟前
5分钟前
奇趣糖发布了新的文献求助10
5分钟前
领导范儿应助奇趣糖采纳,获得10
5分钟前
大模型应助jjc采纳,获得10
5分钟前
5分钟前
jjc发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Progie应助丽优采纳,获得20
6分钟前
方沅完成签到,获得积分10
7分钟前
螃蟹One完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
xy完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426548
求助须知:如何正确求助?哪些是违规求助? 4540251
关于积分的说明 14171889
捐赠科研通 4458024
什么是DOI,文献DOI怎么找? 2444772
邀请新用户注册赠送积分活动 1435850
关于科研通互助平台的介绍 1413284