亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction

一致性(知识库) 迭代重建 推论 数据一致性 计算机科学 人工智能 基本事实 理论(学习稳定性) 生成模型 数学优化 算法 机器学习 数学 生成语法 操作系统
作者
Wei‐Wen Wu,Jiayi Pan,Yanyang Wang,Shaoyu Wang,Jianjia Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3376414
摘要

Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
田様应助viciz采纳,获得10
31秒前
35秒前
无花果应助科研通管家采纳,获得10
39秒前
viciz完成签到,获得积分10
40秒前
41秒前
drr发布了新的文献求助10
42秒前
WQY发布了新的文献求助10
44秒前
47秒前
59秒前
WQY完成签到,获得积分10
1分钟前
24完成签到 ,获得积分10
1分钟前
打工不可能完成签到,获得积分10
1分钟前
沧海云完成签到 ,获得积分10
1分钟前
Tuesday完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
efoge发布了新的文献求助10
1分钟前
小肉球完成签到 ,获得积分10
1分钟前
嗯哼应助mmyhn采纳,获得10
1分钟前
1分钟前
善学以致用应助spearbog采纳,获得10
1分钟前
顾矜应助efoge采纳,获得10
2分钟前
susu完成签到 ,获得积分10
2分钟前
wxyinhefeng完成签到 ,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
李健应助spearbog采纳,获得10
2分钟前
2分钟前
yeyi9851应助科研通管家采纳,获得10
2分钟前
Jasper应助susu采纳,获得10
2分钟前
连长完成签到,获得积分10
2分钟前
2分钟前
2分钟前
月出西山上完成签到 ,获得积分10
3分钟前
铮铮铁骨发布了新的文献求助10
3分钟前
3分钟前
酷波er应助sochiyuen采纳,获得30
3分钟前
Billy应助zy1593采纳,获得30
3分钟前
小吉利发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056430
求助须知:如何正确求助?哪些是违规求助? 2713056
关于积分的说明 7434409
捐赠科研通 2358078
什么是DOI,文献DOI怎么找? 1249228
科研通“疑难数据库(出版商)”最低求助积分说明 606981
版权声明 596195