Multi-channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction

一致性(知识库) 迭代重建 推论 数据一致性 计算机科学 人工智能 基本事实 理论(学习稳定性) 生成模型 数学优化 频道(广播) 过程(计算) 算法 机器学习 数学 生成语法 操作系统 计算机网络
作者
Wei‐Wen Wu,Jiayi Pan,Yanyang Wang,Shaoyu Wang,Jianjia Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3461-3475 被引量:19
标识
DOI:10.1109/tmi.2024.3376414
摘要

Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然冬灵应助LXX采纳,获得20
刚刚
脑洞疼应助尼玛采纳,获得10
刚刚
天地侵略者完成签到,获得积分10
刚刚
刚刚
1秒前
luan发布了新的文献求助10
1秒前
打打应助huihui采纳,获得10
2秒前
Hello应助more采纳,获得10
2秒前
科研通AI5应助林海采纳,获得10
2秒前
ding应助你好采纳,获得10
3秒前
bajie01完成签到,获得积分10
4秒前
4秒前
魏笑白完成签到,获得积分10
5秒前
Lyhhh完成签到,获得积分10
6秒前
科研关注了科研通微信公众号
6秒前
阔达博发布了新的文献求助10
6秒前
小王同学搞学术完成签到,获得积分20
6秒前
耍酷紫安完成签到,获得积分10
6秒前
Daisypharma完成签到,获得积分10
7秒前
lsy发布了新的文献求助10
8秒前
8秒前
bajie01发布了新的文献求助10
9秒前
9秒前
天一应助超帅的岱周采纳,获得10
9秒前
CT发布了新的文献求助10
10秒前
yhao发布了新的文献求助10
10秒前
略略完成签到,获得积分10
10秒前
枫叶完成签到,获得积分20
11秒前
科研通AI5应助结实的涵蕾采纳,获得10
11秒前
经济完成签到,获得积分10
11秒前
11秒前
Ava应助zbszd采纳,获得10
11秒前
11秒前
11秒前
Owen应助sjh采纳,获得10
12秒前
无花果应助more采纳,获得10
12秒前
12秒前
12秒前
13秒前
归海老四完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285