Multi-channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction

一致性(知识库) 迭代重建 推论 数据一致性 计算机科学 人工智能 基本事实 理论(学习稳定性) 生成模型 数学优化 频道(广播) 过程(计算) 算法 机器学习 数学 生成语法 操作系统 计算机网络
作者
Wei‐Wen Wu,Jiayi Pan,Yanyang Wang,Shaoyu Wang,Jianjia Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3461-3475 被引量:20
标识
DOI:10.1109/tmi.2024.3376414
摘要

Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张三发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
white完成签到,获得积分10
3秒前
ZJN完成签到,获得积分10
3秒前
英俊的铭应助獭兔采纳,获得10
3秒前
李健应助youlingduxiu采纳,获得10
4秒前
lzh发布了新的文献求助10
4秒前
李成哲发布了新的文献求助10
4秒前
英姑应助淀粉采纳,获得10
4秒前
SciGPT应助淀粉采纳,获得10
4秒前
yyc发布了新的文献求助10
4秒前
丘比特应助小王采纳,获得10
5秒前
6秒前
马腾完成签到,获得积分10
6秒前
goodbuhui发布了新的文献求助10
7秒前
清爽含灵发布了新的文献求助10
7秒前
怡然以南完成签到,获得积分10
7秒前
8秒前
彭于晏应助啾一口香菜采纳,获得10
8秒前
苗条的成仁完成签到,获得积分10
8秒前
爱吃麻辣香锅完成签到,获得积分10
8秒前
9秒前
潘道士完成签到 ,获得积分10
9秒前
Zachary完成签到,获得积分10
9秒前
Kenzonvay发布了新的文献求助10
10秒前
10秒前
10秒前
在在在在在在1完成签到,获得积分20
11秒前
加贝发布了新的文献求助10
12秒前
12秒前
EthanChan完成签到,获得积分10
12秒前
12秒前
华仔应助优秀的怀蕊采纳,获得10
13秒前
温暖完成签到,获得积分20
13秒前
清爽含灵完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122