亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition

手势 材料科学 手势识别 人工智能 软机器人 计算机科学 可穿戴计算机 可穿戴技术 机器人 机器学习 嵌入式系统
作者
Yongjun Song,Thi Huyen Nguyen,Dawoon Lee,Jaekyun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (7): 9551-9560 被引量:18
标识
DOI:10.1021/acsami.3c18588
摘要

Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress–strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress–strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (R-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobizaizhi233完成签到,获得积分10
2秒前
可乐完成签到 ,获得积分10
4秒前
4秒前
Jeongin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
12秒前
科目三应助OYJH采纳,获得10
22秒前
科研兵完成签到 ,获得积分10
26秒前
30秒前
46秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
NexusExplorer应助科研通管家采纳,获得10
49秒前
科研通AI6.1应助Okanryo采纳,获得10
57秒前
sulin完成签到 ,获得积分10
57秒前
58秒前
59秒前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Gryphon完成签到,获得积分10
1分钟前
钮钴禄鬼鬼完成签到 ,获得积分10
1分钟前
Akim应助孙泉采纳,获得10
1分钟前
1分钟前
LCB发布了新的文献求助10
1分钟前
IMP完成签到 ,获得积分10
1分钟前
1分钟前
LCB完成签到,获得积分10
1分钟前
1分钟前
1分钟前
桐桐应助玉米采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
顾矜应助LCB采纳,获得10
1分钟前
Kiki发布了新的文献求助10
2分钟前
魔幻的芳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729