Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition

手势 材料科学 手势识别 人工智能 软机器人 计算机科学 可穿戴计算机 可穿戴技术 机器人 机器学习 嵌入式系统
作者
Yongjun Song,Thi Huyen Nguyen,Dawoon Lee,Jaekyun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (7): 9551-9560 被引量:18
标识
DOI:10.1021/acsami.3c18588
摘要

Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress–strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress–strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (R-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sheep完成签到,获得积分10
刚刚
Raclen111应助lingzi1015采纳,获得20
刚刚
1秒前
1秒前
烟花应助123采纳,获得10
1秒前
英俊的哈密瓜完成签到,获得积分10
1秒前
2秒前
newgeno2003完成签到,获得积分10
2秒前
xueshu发布了新的文献求助10
2秒前
un完成签到,获得积分10
2秒前
狗123发布了新的文献求助10
2秒前
阿拉完成签到,获得积分10
2秒前
2秒前
Gina发布了新的文献求助10
3秒前
3秒前
3秒前
DDEEE完成签到,获得积分10
3秒前
善良的易形完成签到,获得积分10
3秒前
3秒前
luchong发布了新的文献求助50
3秒前
Ava应助zzzzlll采纳,获得10
4秒前
petrichor完成签到,获得积分10
4秒前
4秒前
vadz7x完成签到,获得积分10
4秒前
4秒前
4秒前
SAF完成签到,获得积分10
5秒前
sheep发布了新的文献求助10
5秒前
Nuts发布了新的文献求助10
5秒前
DDEEE发布了新的文献求助10
6秒前
feizhuliu完成签到,获得积分10
6秒前
6秒前
隐形曼青应助七七采纳,获得10
6秒前
SciGPT应助丁紧紧采纳,获得10
6秒前
7秒前
小杜完成签到 ,获得积分10
7秒前
Synthen发布了新的文献求助10
7秒前
7秒前
老福贵儿应助seedcui采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603