Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition

手势 材料科学 手势识别 人工智能 软机器人 计算机科学 可穿戴计算机 可穿戴技术 机器人 机器学习 嵌入式系统
作者
Yongjun Song,Thi Huyen Nguyen,Dawoon Lee,Jaekyun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (7): 9551-9560 被引量:18
标识
DOI:10.1021/acsami.3c18588
摘要

Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress–strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress–strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (R-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ManLi完成签到,获得积分10
1秒前
Nancy完成签到,获得积分20
1秒前
研友_VZG7GZ应助MMMMMMM采纳,获得10
2秒前
还没有完成签到,获得积分20
3秒前
李婧祎完成签到,获得积分10
4秒前
完美世界应助cancihappy采纳,获得10
4秒前
wang完成签到,获得积分10
5秒前
Hello应助ManLi采纳,获得10
7秒前
小星星发布了新的文献求助30
8秒前
丸子完成签到 ,获得积分10
10秒前
10秒前
10秒前
八八发布了新的文献求助10
11秒前
kelexh发布了新的文献求助10
11秒前
12秒前
Joanna完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
不安乐瑶完成签到,获得积分10
14秒前
zzzzz发布了新的文献求助20
15秒前
深情安青应助gkq采纳,获得10
16秒前
sheep完成签到,获得积分10
16秒前
小咸鱼完成签到 ,获得积分10
17秒前
啥也不会完成签到,获得积分10
17秒前
epsilonN完成签到 ,获得积分10
18秒前
18秒前
脑洞疼应助小蒋采纳,获得10
19秒前
大模型应助宝海青采纳,获得10
19秒前
Denny完成签到,获得积分10
20秒前
21秒前
21秒前
源源元完成签到 ,获得积分10
22秒前
22秒前
24秒前
李爱国应助LLLucen采纳,获得10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
gkq发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675259
求助须知:如何正确求助?哪些是违规求助? 4944557
关于积分的说明 15152263
捐赠科研通 4834457
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543138
关于科研通互助平台的介绍 1501068